

MMB Hydraulikzylinder

Rundzylinder für Betriebsdrücke bis zu 160 bar

aerospace
climate control
electromechanical
filtration
fluid & gas handling
hydraulics
pneumatics
process control
sealing & shielding

Katalog HY07-1215/DE

Einleitung

Rundzylinder **Baureihe MMB**

Εi			-		
	nl		***	1112	
		ш	LL	ш	u
				_	-

Die Zylinder der Baureihe MMB sind für gleichbleibend hohe Beanspruchung bei geringen Betriebskosten konstruiert. Sie sind für Schwerbetrieb ausgelegt, wie z.B. in Stahlwerken, in denen nur robuste und langlebige Zylinder in Frage kommen.

Außer den im Katalog geschilderten Standardzylindern konstruieren und fertigen wir MMB-Zylinder natürlich auch nach Kundenwunsch.

Standardspezifikationen

- Zylinder für schwere Beanspruchungen
- Befestigungsarten und Abmessungen nach CETOP RP58H, ISO 6020/1
- Nenndruck 160 bar
- Dauerfester Betrieb bei Nenndruck
- Hydrauliköl auf Mineralölbasis andere Medien auf Wunsch
- Temperaturbereich der Standarddichtungen: -20°C bis +80°C
- Konstruktion: Zylinderkopf und -boden in Flanschbauweise
- Bohrungsdurchmesser: von 40mm bis 320mm
- Kolbenstangendurchmesser: von 22mm bis 220mm
- Endlagendämpfung an beiden Enden (Option)
- Entlüftung an beiden Enden (Option)
- Geprüft in Übereinstimmung mit ISO 10100:2001

Inhaltsverzeichnis	Seite
Konstruktionsmerkmale und Vorzüge	3
Optionen	4
Rechteckflanschbefestigung	5
Rundflanschbefestigung	6
Schwenkaugenbefestigung	7
Fußbefestigung und Schwenkzapfenbefestigung	8
Kolbenstangenende – Ausführungen	9
Zubehör	10
Befestigungsinformationen	13
Zylindergewichte	13
Berechnung des Zylinderdurchmessers	14
Ermittlung der Kolbenstangengröße	15
Hubfaktoren	15
Langhubzylinder	16
Begrenzungsrohre	16
Anschlüsse	17
Dämpfung	18
Dichtungen und Druckmedien	20
Ersatzteile und Wartung	22
Restallinformation	23

Parker – Unser Engagement für Ihren Erfolg

Parker Hannifin ist der weltweit führende Hersteller von Bewegungs- und Steuertechnologien. Das Unternehmen beschäftigt mehr als 58.000 Mitarbeiter in 48 Ländern und bietet seinen Kunden technische Spitzenleistungen und einen erstklassigen Kundendienst. Darüber hinaus ist Parker international der größte Lieferant von Hydrozylindern für die Industrie. Wenn Sie Partner von Parker werden, erhalten Sie Zugriff auf umfangreiche Ressourcen, die Sie bei der Steigerung Ihrer Produktivität und Rentabilität unterstützen.

- CAD-Zeichnungen
- Informationen zur Wartung
- Produktaktualisierungen
- Anleitung bei Anwendungen
- Kundenspezifische Lösungen
- Fremdsprachliche Inhalte
- Zugang zu anderen Produkten und Services von Parker

3-D CAD

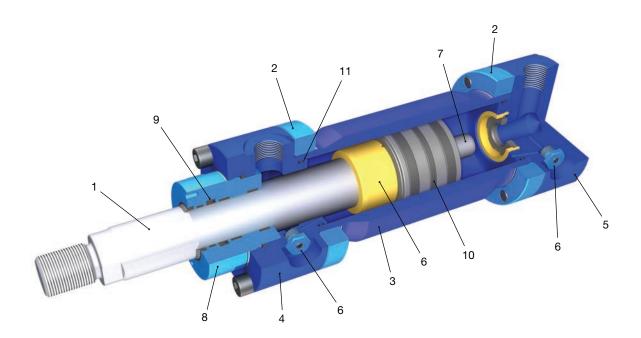
Die neue 3D-CAD-Software erleichtert die Auswahl und das Zeichnen von Zylindern. Dies spart Ihnen Zeit und sichert die Genauigkeit der fertigen Zeichnung. Scannen Sie den QR-Code, um die MMB-Zylinder unter www.parker.com anzusehen, oder wenden Sie sich an Ihr Verkaufsbüro (siehe Rückumschlag).

ACHTUNG — VERANTWORTUNG DES ANWENDERS

VERSAGEN ODER UNSACHGEMÄßE AUSWAHL ODER UNSACHGEMÄßE VERWENDUNG DER HIERIN BESCHRIEBENEN PRODUKTE ODER ZUGEHÖRIGER TEILE KÖNNEN TOD, VERLETZUNGEN VON PERSONEN ODER SACHSCHÄDEN VERURSACHEN.

Dieses Dokument und andere Informationen von der Parker-Hannifin Corporation, seinen Tochtergesellschaften und Vertragshändlern enthalten Produkt- oder Systemoptionen zur weiteren Untersuchung durch Anwender mit technischen Kenntnissen.

Der Anwender ist durch eigene Untersuchung und Prüfung allein dafür verantwortlich, die endgültige Auswahl des Systems und der Komponenten zu treffen und sich zu vergewissern, dass alle Leistungs-, Dauerfestigkeits-, Wartungs-, Sicherheits- und Warnanforderungen der Anwendung erfüllt werden. Der Anwender muss alle Aspekte der Anwendung genau untersuchen, geltenden Industrienormen folgen und die Informationen in Bezug auf das Produkt im aktuellen Produktkatalog sowie alle anderen Unterlagen, die von Parker oder seinen Tochtergesellschaften oder Vertragshändlern bereitgestellt werden, zu beachten.


Soweit Parker oder seine Tochtergesellschaften oder Vertragshändler Komponenten oder Systemoptionen basierend auf technischen Daten oder Spezifikationen liefern, die vom Anwender beigestellt wurden, ist der Anwender dafür verantwortlich festzustellen, dass diese technischen Daten und Spezifikationen für alle Anwendungen und vernünftigerweise vorhersehbaren Verwendungszwecke der Komponenten oder Systeme geeignet sind und ausreichen.

Verkaufs-Angebot

Wenden Sie sich bitte wegen eines ausführlichen Verkaufs-Angebotes an Ihre Parker-Vertretung.

1 Kolbenstange

Die Kolbenstange besteht aus legiertem Kohlenstoffstahl, fein geschliffen und hartverchromt und ist auf max. 0,2 μm poliert. Stangendurchmesser bis zu 140 mm werden vor der Verchromung auf min. HRc54 induktionsgehärtet, wodurch eine 'kerbbeständige' Oberfläche sowie eine verlängerte Lebensdauer der Dichtungen erreicht wird. Kolbenstangen mit Durchmesser ab 160 mm werden auf Wunsch ebenfalls induktionsgehärtet. Alle Stangen- und Kolbenbaugruppen sind bei vollem Nenndruck auf ermüdungsfreien Betrieb ausgelegt.

2 Kopf- und Bodenbefestigung

Zylinderkopf und -boden sind an schwere Stahlflansche geschraubt, die ihrerseits über ein Gewinde an den Enden des Zylinderrohres befestigt sind. Dadurch wird Dauerfestigkeit bei Nenndruck erreicht.

3 Zylinderrohr

Das dickwandige Zylinderrohr besteht aus Stahl und ist zur Erzielung von minimaler Reibung und langer Lebensdauer der Dichtungen gehont.

4 und 5 Kopf und Boden

Kopf und Boden sind aus Stahl gearbeitet und für zusätzliche Versteifung und präzise Ausrichtung am Innendurchmesser des Zylinderrohrs zentriert. Zylinderkopf und -boden sind zum Rohr mit einer Kombination aus O-Ring und Stützring abgedichtet.

6 und 7 Endlagendämpfung

Endlagendämpfungen sind stetig wirkend und liefern eine gleichförmige Abbremsung, wodurch Geräusch und Stoßbelastung verringert und die Lebensdauer des Zylinders verlängert wird. Die Dämpfung am Zylinderkopf erfolgt über eine schwimmend gelagerte Dämpfungsbüchse, am Boden über den polierten Dämpfungszapfen und den schwimmend gelagerten Dämpfungsring. Zur optimalen Einstellung der Endlagengeschwindigkeit sind an beiden Enden des Zylinders Nadelventile vorgesehen.

Integrierte Rückschlagventile ermöglichen die volle Beaufschlagung der Kolbenfläche und damit ein schnelles Anfahren aus der Endlage. Kopfseitig ist die Rückschlagventilfunktion in die schwimmende Dämpfungsbüchse integriert, bodenseitig übernimmt der schwimmende Dämpfungsring aus Bronze diese Aufgabe.

8 und 9 Dichtungsbüchse, Stangendichtungen und Lager

Die Stangendichtungen befinden sich in einer herausschraubbaren Dichtungsbüchse zur wirksamen Rückhaltung des Druckmediums und bieten wirksamen Schutz vor dem Eindringen von Schmutz.

Die herausschraubbare Dichtungsbüchse ist mit leistungsstarken Polymer-Tragringen ausgestattet, die Seitenkräfte aufnehmen. Durch den weiten Abstand dieser Ringe verringert sich die Lagerbelastung und erhöht sich die Lebensdauer des Lagers.

Die Polymer-Lagerringe und die Stangendichtungen lassen sich beim Ausbau der Dichtungsbüchse einfach austauschen. Alle Komponenten lassen sich ohne Demontage des Zylinders warten.

10 Kolbendichtungen

Drei Kolbendichtungsvarianten sind erhältlich, die für die verschiedensten Anwendungen geeignet sind (siehe Seite 4). Darüber hinaus lassen sich die MMB-Zylinder auf die speziellen Kundenanforderungen abstimmen. Einzelheiten auf Rückfrage beim Hersteller.

11 Rohrdichtungen

Zur leckfreien Abdichtung des Zylinders sind die Rohrdichtungen und die Büchse-/Kopfdichtung als Rundringe ausgeführt, wodurch die Probleme der bei Flächendichtungen auftretenden Extrusion und frühzeitigen Versagens vermieden werden.

Stangen- und Kolbendichtungsoptionen

Siehe Abbildungen Seite 21

Standardoption

Die Standarddichtungsoption der MMB-Zylinder erbringt hervorragende Leistung bei niedrigen und extrem hohen Geschwindigkeiten und bietet eine exzellente Produktlebensdauer bei Anwendungen mit hohen Beanspruchungen. Sie ist für den Einsatz mit allen Druckmedien (siehe Seite 20) mit Kolbengeschwindigkeiten von bis zu 0,5 m/s geeignet.

Für eine wirkungsvolle Abdichtung verfügen standardmäßige Stangendichtungen über einen Hochleistungslippendichtring sowie einen Abstreifring, während die Kolben mit einer gefüllten Polymerdichtung und Tragringen ausgestattet sind, die den metallischen Kontakt zum Zylinderrohr verhindern und die Kolbendichtung vor Verunreinigungen schützen.

Dachmanschettenoption

Die Kombination aus Dachmanschettenstangendichtung und Kolbendachmanschette ist für die Verwendung unter extremen Einsatzbedingungen, beispielsweise in Stahlwerken, ausgelegt. Sie eignet sich für alle Druckmedien und für Kolbengeschwindigkeiten von bis zu 0,5 m/s und kann dazu verwendet werden, Lasten in Position zu halten.

Dachmanschettenstangendichtungen besitzen eine Halterung aus Stahl und eine entnehmbare Stahlbuchse, die die inneren Tragringe enthält. Ein Hochleistungsabstreifer verhindert dabei das Eindringen von Schmutz. Dachmanschettenkolben bestehen aus einem zweiteiligen Kolben mit einem breiten Tragring zwischen Dachmanschettendichtungen.

Lasthalteoption

Geeignet für Anwendungen, bei denen Lasten in Position gehalten werden müssen. Diese Option kombiniert die Vorzüge der standardmäßigen Stangendichtungen, nämlich geringe Reibung und lange Produktlebensdauer, mit den robusten Eigenschaften der Dachmanschettenkolbendichtung. Die Lasthalteoption ist für den Einsatz mit Kolbengeschwindigkeiten bis zu 0,5 m/s und die Verwendung mit allen Druckmedien geeignet.

Entlüftung

Entlüftung ist an beiden Enden möglich. Die Anschlüsse sind in Kopf und Boden integriert und gegen unbeabsichtigtes Lösen gesichert. Die Lage der Entlüftung in Bezug zum Druckanschluss muss bei Bestellung angegeben werden – siehe Seite 23.

Leckölanschluß

Die Tendenz von Hydraulikmedien, an der Kolbenstange zu haften, kann bei bestimmten Einsatzbedingungen zu einer Ansammlung des Mediums im Hohlraum zwischen den Dichtungen führen. Dies tritt bei Langhubzylindern auf, bei denen wie bei Differentialschaltungen ein konstanter Gegendruck besteht, oder bei denen das Verhältnis von der Ausfahr- zur Einfahrgeschwindigkeit größer 2:1 ist.

Leckölanschlüsse müssen zum Flüssigkeitsbehälter zurückgeführt werden, der sich unterhalb des Zylinderniveaus befindet.

Wegmeßsysteme und Positionsschaltern

Die Zylinder der Baureihe MMB können mit verschiedenen linearen Wegaufnehmern ausgerüstet werden. Zylinder der Baureihe MMB lassen sich auch mit berührungslosen Positionsschaltern ausstatten.

Faltenbalg

Kolbenstangenflächen, die mit an der Luft aushärtender Verschmutzung in Berührung kommen, sind besonders zu schützen. Für diese Fälle empfehlen wir daher einen Faltenbalg. Die Kolbenstange ist zu diesem Zweck um das Balgmaß zu verlängern.

Stangenwerkstoffe

Alternatīv zu den normalen Werkstoffen sind auf Wunsch Kolbenstangen aus Edelstahl oder anderem Material mit unterschiedlicher Fertigungsgüte erhältlich.

Metallabstreifer

Falls die Kolbenstange haftendem Schmutzbefall ausgesetzt ist und daher vorzeitigen Verschleiß der Dichtungen verursacht, empfehlen wir den Einbau eines Metallabstreifers anstelle des standardmäßig verwendeten Abstreifers.

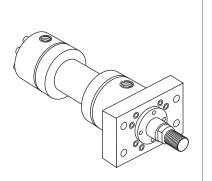
Zylinder mit beidseitiger Kolbenstange

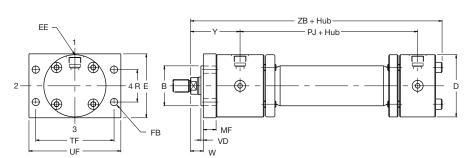
Zylinder der Baureihe MMB sind auch mit beidseitiger Kolbenstange erhältlich. Bitte Rückfrage beim Hersteller.

Sonderausführungen

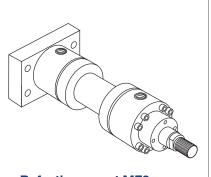
Alternative Abdichtungssysteme, spezielle Befestigungsarten, Ausführungen für höhere bzw, geringere Betriebsdrücke als Vorgabe, Anschweißen des Bodens zur Reduzierung der Gesamtlänge (nur bei Zylindern ohne Endlagendämpfung), größere Bohrungsdurchmesser und besondere Kolbengrößen, sind nur einige der möglichen Sonderausführungen.

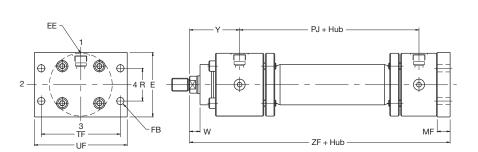
Seefeste Ausführung


MMB Zylinder können mit seefesten Werkstoffen und Lackierungen ausgeführt werden. Bitte Rückfrage beim Hersteller.

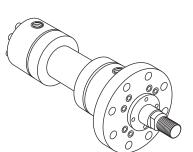

Wartung

Alle Zylinder erfordern periodische Wartung oder Reparatur. Die Zylinder der Baureihe MMB sind besonders wartungsfreundlich konzipiert und weisen folgende Merkmale auf:


- Austauschbare Dichtungsbüchse Dichtungsbüchse und Stangendichtungen lassen sich ohne Demontage des Zylinders austauschen.
- Fasen an beiden Zylinderenden zur leichteren Montage von Kopf und Boden sowie zum Einbau der Kolbendichtungen.
- Die Flansche auf dem Rohr sind abnehmbar und gestatten daher den separaten Austausch des Zylinderrohres. Die Flansche haben genug Abstand zu Kopf und Boden, damit im Fall ernsthafter Schäden oder Korrosion die Bolzen durchgesägt werden können.
- Hochzugfeste Bolzen und Schrauben sorgen für leichte Wartung und Austausch.

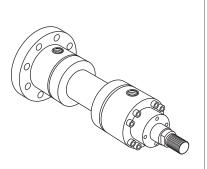


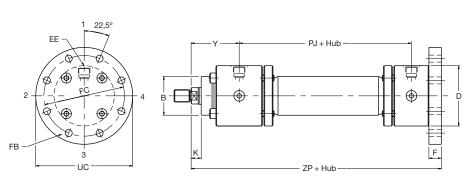
Befestigungsart MF1 Rechteckflansch Kopf



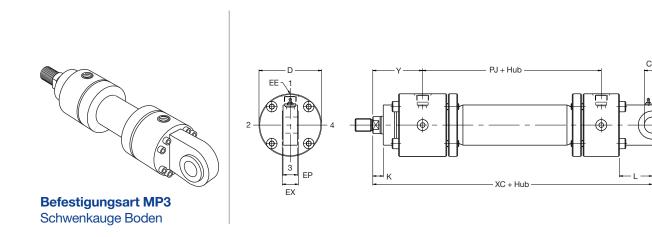

Abmessungen - MF1 und MF2 Vgl. Abmessungen Kolbenstangenende auf Seite 9

Dahmma	Ctonno	Chamman	ъ	_												+ Hub	
Ø	Nr.	Stangen Ø	B f8	D max	E	EE (BSPP)	FB	MF	R	TF	UF	VD	W	Υ	PJ	ZB max.	ZF
40	1 2	22 28	50	78	80	G¹/₂	9	16	40,6	98	115	3	16	71	97	198	206
50	1 2	28 36	60	95	100	G¹/ ₂	11	20	48,2	116,4	140	4	18	72	111	213	225
63	1 2	36 45	70	116	120	G ³ / ₄	13,5	25	55,5	134	160	4	20	82	117	236	249
80	1 2	45 56	85	130	135	G ³ / ₄	17,5	32	63,1	152,5	185	4	22	91	134	262	282
100	1 2	56 70	106	158	160	G1	22	32	76,5	184,8	225	5	25	108	162	314	332
125	1 2	70 90	132	192	195	G1	22	32	90,2	217,1	255	5	28	121	174	341	357

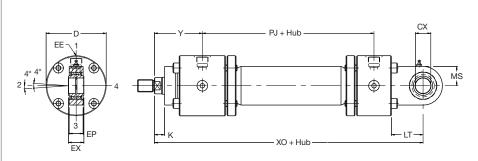



Befestigungsart MF3 Rundflansch Kopf

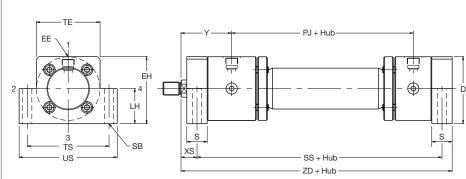
Zentrierung von "B" serienmäßig nur für Typ MF3.


Befestigungsart MF4Rundflansch Boden

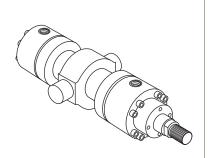
Abmessungen - MF3 und MF4 Vgl. Abmessungen Kolbenstangenende auf Seite 9


Bohrung	Stongo	Stongon	В	D	EE					UC	VD				+ Hub	
Ø	Nr.	Ø	f8	max.	(BSPP)	F	FB	FC	K	max.	min.	WC	Y	PJ	ZB max.	ZP
40	1 2	22 28	50	78	G¹/ ₂	16	9	106	13	125	3	16	71	97	198	206
50	1 2	28 36	60	95	G¹/₂	20	11	126	14	148	4	18	72	111	213	225
63	1 2	36 45	70	116	G ³ / ₄	25	13,5	145	16	170	4	20	82	117	236	249
80	1 2	45 56	85	130	G ³ / ₄	32	17,5	165	18	195	4	22	91	134	262	282
100	1 2	56 70	106	158	G1	32	22	200	20	238	5	25	108	162	314	332
125	1 2	70 90	132	192	G1	32	22	235	23	272	5	28	121	174	341	357
160	1 2	90 110	160	232	G1 ¹ / ₄	36	22	280	25	316	5	30	143	191	386	406
200	1 2	110 140	200	285	G1 ¹ / ₄	40	26	340	30	385	5	35	190	224	466	490
250	1 2	140 180	250	365	G1 ¹ / ₂	56	33	420	32	500	8	40	205	290	570	606
320	1 2	180 220	320	450	G1 ¹ / ₂	63	39	520	37	600	8	45	250	358	684	723

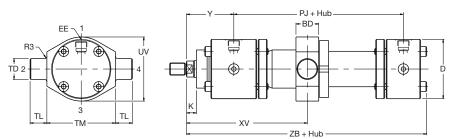
Befestigungsart MP5 Schwenkauge mit Gelenklager Boden


Abmessungen - MP3 und MP5 Vgl. Abmessungen Kolbenstangenende auf Seite 9

	9				9	•	, -		. 5				
Bohrung	Stange	Stangen	CD H9	D	EE		EV		L	MR		+	Hub
Ø	Nr.	Ø	und CX ^{H7}	max.	(BSPP)	EP	EX h12	K	und LT	und MS	Υ	PJ	XC und XO
40	1 2	22 28	20	78	G¹/ ₂	18	20	13	41	25	71	97	231
50	1 2	28 36	25	95	G¹/ ₂	22	25	14	52	32	72	111	257
63	1 2	36 45	32	116	G ³ / ₄	27	32	16	65	40	82	117	289
80	1 2	45 56	40	130	G ³ / ₄	35	40	18	82	50	91	134	332
100	1 2	56 70	50	158	G1	40	50	20	95	63	108	162	395
125	1 2	70 90	63	192	G1	52	63	23	103	71	121	174	428
160	1 2	90 110	80	232	G1 ¹ / ₄	66	80	25	135	90	143	191	505
200	1 2	110 140	100	285	G1 ¹ / ₄	84	100	30	165	112	190	224	615
250	1 2	140 180	125	365	G1 ¹ / ₂	102	125	32	223	160	205	290	773
320	1 2	180 220	160	450	G1 ¹ / ₂	130	160	37	270	200	250	358	930



+49 (0) 451 - 87 97 740



Befestigungsart MT4 Schwenkzapfen, mittig

Hinweis: XV-Maß muß kundenseits angegeben werden. Falls das Mindestmaß für Sie nicht akzeptabel ist, bitten wir um Rückfrage.

Abmessungen – MS2 und MT4 Vgl. Abmessungen Kolbenstangenende S. 9 und Lagerböcke S. 13

Bohrung	Stange	Stangen	BD	D und	EE			LH		SB	TD	TI	TM	TS		UV		χV		Mindest-		+	⊦ Hub		
Ø	Nr.	Ø	max.		(BSPP)	EH	K	h10	S	H13	f8	js15	h12	js13	US	max.	XS	min.	Y	hublänge MT4	PJ	SS	XV max.	ZB max.	ZD
40	1 2	22 28	30	78	G ¹ / ₂	82	13	43	25	11	20	16	90	100	120	78	19,5	130	71	37	97	183	93	198	215
50	1 2	28 36	35	95	G¹/ ₂	100	14	52	32	14	25	20	105	120	145	95	22	142	72	40	111	199	102	213	237
63	1 2	36 45	45	116	G ³ / ₄	120	16	62	32	18	32	25	120	150	180	116	29	160	82	53	117	211	107	236	256
80	1 2	45 56	50	130	G ³ / ₄	135	18	70	40	22	40	32	135	170	210	130	34	180	91	53	134	236	122	262	290
100	1 2	56 70	60	158	G1	161	20	82	50	26	50	40	160	205	250	158	32	210	108	58	162	293	152	314	350
125	1 2	70 90	75	192	G1	196	23	100	56	33	63	50	195	245	300	195	32	235	121	78	174	321	157	341	381
160	1 2	90 110	90	232	G1 ¹ / ₄	238	25	119	60	33	80	63	240	295	350	240	36	273	143	96	191	364	177	386	430
200	1 2	110 140	110	285	G1¹/₄	288	30	145	72	39	100	80	295	350	415	390	39	337	190	70	224	447	267	466	522
250	1 2	140 180	135	365	G1 ¹ / ₂	_	32	-	-	-	125	100	370	-	_	480	-	393	205	95	290	-	298	570	-
320	1 2	180 220	175	450	G1 ¹ / ₂	_	37	_	-	_	160	125	470	_	_	600	_	486	250	116	358	_	370	684	_

Kolbenstangenende – Ausführungen

Rundzylinder **Baureihe MMB**

Ausführungen

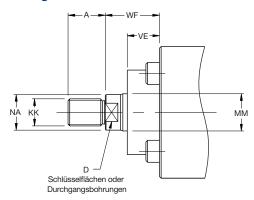
Zylinder der Baureihe MMB sind standardmäßig mit zwei Kolbenstangenenden sowie Sonderausführungen erhältlich. Standard-Kolbenstangenende und -Gewinde entsprechen der ISO Norm 4395.

Kolbenstangenende Code 4 und 9

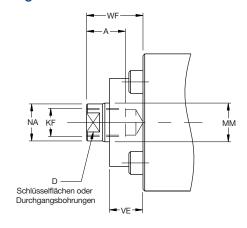
Jede Zylinderbohrungsgröße wird mit zwei Durchmessern der Kolbenstange angeboten: ein kleinerer Stangendurchmesser Nr. 1 und ein größerer Stangendurchmesser Nr. 2. Das Außengewinde des Standard-Stangenendes ist für jede Kolbenstangengröße nach ISO 6020/1 ausgeführt und wird als Code 4 das Innengewinde als Code 9 bezeichnet.

Kolbenstangenende Code 3

Kolbenstangen mit einem kundenspezifischen Ende werden durch den Code 3 gekennzeichnet. Der Bestellung ist in diesem Fall eine detaillierte Beschreibung beizufügen. Bitte die Abmessungen KK bzw. KF, A, das Übermaß (WF – VE) sowie die Gewindeart angeben.


Kolbenstangenende Code 7

Wird Code 7 gewählt, so besitzen die für das Stangenende vorgesehenen Stangenköpfe den gleichen Bolzendurchmesser wie die Lager der entsprechenden Befestigungsarten MP3 und MP5.


Schlüsselfläche

Kolbenstangen bis 140 mm Durchmesser besitzen Schlüsselflächen mit Schlüsselweiten entsprechend untenstehender Tabelle. Stangen über 140 mm Durchmesser weisen vier Durchgangsbohrungen für Hakenschlüssel auf.

Kolbenstangenende Code 4 und 7

Kolbenstangenende Code 9

Abmessungen Kolbenstangenende

Bohrung	Stange	MM	Code	4	Code	7	Code	9	– D	NA	VE	WF
Ø	Nr.	Stangen Ø	KK	Α	KK	Α	KF	Α	– U	NA	VE	WF
40	1	22	M16x1,5	22	-	-	M16x1,5	22	18	21	10	20
40	2	28	M20x1,5	28	M16x1,5	22	M20x1,5	28	22	26	19	32
50	1	28	M20x1,5	28	_	_	M20x1,5	28	22	26	24	38
50	2	36	M27x2	36	M20x1,5	28	M27x2	36	30	34	24	30
63	1	36	M27x2	36	-	-	M27x2	36	30	34	29	45
03	2	45	M33x2	45	M27x2	36	M33x2	45	39	43	29	45
80	1	45	M33x2	45	-	-	M33x2	45	39	43	36	54
00	2	56	M42x2	56	M33x2	45	M42x2	56	48	54		54
100	1	56	M42x2	56	-	-	M42x2	56	48	54	37	57
100	2	70	M48x2	63	M42x2	56	M48x2	63	62	68		
125	1	70	M48x2	63	-	-	M48x2	63	62	68	37	60
120	2	90	M64x3	85	M48x2	63	M64x3	85	80	88		
160	1	90	M64x3	85	-	-	M64x3	85	80	88	41	66
100	2	110	M80x3	95	M64x3	85	M80x3	95	100	108	71	
200	1	110	M80x3	95	-	-	M80x3	95	100	108	45	75
200	2	140	M100x3	112	M80x3	95	M100x3	112	128	138	73	75
250	1	140	M100x3	112	-	-	M100x3	112	128	138	64	96
230	2	180	M125x4	125	M100x3	112	M125x4	125	Ø15 x 4	175		30
320	1	180	M125x4	125	-	-	M125x4	125	Ø15 x 4	175	71	108
320	2	220	M160x4	160	M125x4	125	M160x4	160	Ø15 x 4	214	/ 1	100

Baureihe MMB

Auswahl

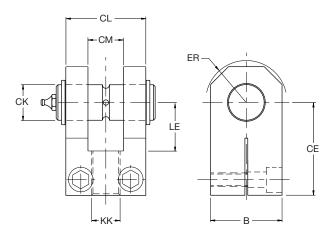
Das Zubehör für die Kolbenstange wird passend zum Gewinde des Kolbenstangenendes ausgewählt - vgl. Seite 9. Die Auswahl des Zubehörs für den Zylinderboden richtet sich dagegen nach dem Lagerdurchmessers des Zylinders - vgl. Maße CD und CX auf Seite 7.

Bolzendurchmesser

Um den gleichen Bolzendurchmesser am Kolbenstangenende und am Zylinderboden (Befestigungsarten MP3 und MP5) zu erhalten, muss für Stange 1 die Gewindeausführung Code 4 und für Stange 2 die Gewindeausführung Code 7 gewählt werden. Dadurch wird der korrekte Gewindedurchmesser am Stangenende für die Aufnahme von Gelenkkopf bzw. Schwenkkopf erreicht., vgl. Kolbenstangenende -Abmessungen, Seite 9.

Kolbenstange

Gabelkopf und Kuppelbolzen	- Seite 10
Schwenkkopf	- Seite 11
Gabel-Lagerbock mit Kuppelbolzen, Form A	- Seite 11
Gelenkkopf mit sphärischem Gelenklager	- Seite 12
Gabel-Lagerbock mit Kuppelbolzen, Form B	- Seite 12

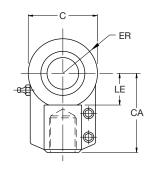

Zylinderboden

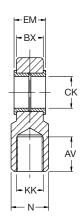
Gabel-Lagerbock mit Kuppelbolzen, Form A für Befestigungsarten MP3 und MP5	- Seite 11
Gabel-Lagerbock mit Kuppelbolzen, Form B	
für Befestigungsarten MP3 und MP5	 Seite 12

Zylinderrohr

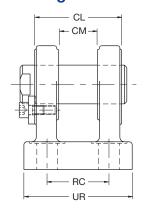
Lagerböcke für Befestigungsart MT4 - Seite 13

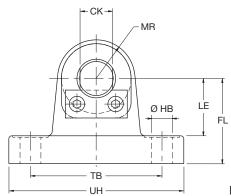
Gabelkopf und Kuppelbolzen AP2 ISO 8132


Für größere Abmessungen bitte im Werk nachfragen.


Teile- Nr.	В	CE js13	CK H9/f8	CL h16	CM A13	ER max.	KK	LE min.	Gewicht kg	Belastbarkeit kN
0962130020	40	52	20	45	20	25	M16x1,5	27	0,6	20
0962130025	50	65	25	56	25	32	M20x1,5	34	1,1	32
0962130032	65	80	32	70	32	40	M27x2	41	2,2	50
0962130040	80	97	40	90	40	50	M33x2	51	4,4	80
0962130050	100	120	50	110	50	63	M42x2	63	7,6	125
0962130063	120	140	63	140	63	71	M48x2	75	17,7	200
0962130080	140	180	80	170	80	90	M64x3	94	30,6	320

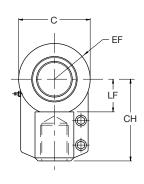
KRAUSE+KÄHLER


Schwenkkopf AP4 ISO 8132



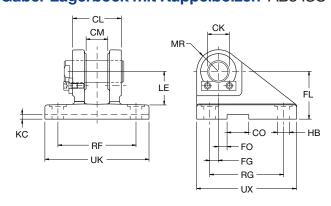
Teile- Nr.	AV min.	BX max.	C max.	CA JS13	СК н9	EM h12	ER max.	KK	LE min.	N max.	Gewicht kg	Belastbarkeit kN
148729	23	17,5	47	52	20	20	25	M16x1,5	20,5	28	0,4	20
148730	29	22	58	65	25	25	32	M20x1,5	25,5	31	0,7	32
148731	37	28	70	80	32	32	40	M27x2	30	38	1,2	50
148732	46	34	89	97	40	40	50	M33x2	39	47	2,1	80
148733	57	42	108	120	50	50	63	M42x2	47	58	4,4	125
148734	64	53.5	132	140	63	63	72,5	M48x2	58	70	7,6	200
148735	86	68	168	180	80	80	92	M64x3	74	91	14,5	320
148737	96	85.5	210	210	100	100	114	M80x3	94	110	28	500
148739	113	105	262	260	125	125	160	M100x3	116	135	43	800
148740	126	133	326	310	160	160	200	M125x4	145	165	80	1250

Gabel-Lagerbock mit Kuppelbolzen AB4 ISO 8132 Form A


Für größere Abmessungen bitte im Werk nachfragen.

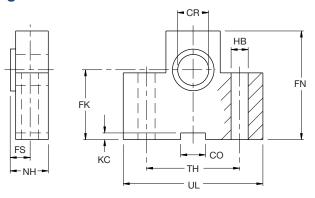

Teile- Nr.	CK H9/m6	CL h16	CM A13	FL js12	HB H13	LE min.	MR max.	RC js14	TB js14	UH max.	UR max.	Gewicht kg	Belastbarkeit kN
0962110020	20	45	20	45	11	30	20	32	75	98	58	1,1	20
0962110025	25	56	25	55	13,5	37	25	40	85	113	70	2,0	32
0962110032	32	70	32	65	17,5	43	32	50	110	143	85	3,5	50
0962110040	40	90	40	76	22	52	40	65	130	170	108	6	80
0962110050	50	110	50	95	26	65	50	80	170	220	130	12	125
0962110063	63	140	63	112	33	75	63	100	210	270	160	19	200
0962110080	80	170	80	140	39	95	80	125	250	320	210	38	320

KRAUSE+KÄHLER


Gelenkkopf mit sphärischem Gelenklager AP6 ISO 8132

Teile- Nr.	AV min.	C max.	CH js13	CN H7	EF max.	EN h12	EU max.	KK	LF min.	N max.	Gewicht kg	Belastbarkeit kN
145239	23	47	52	20	25	20	17,5	M16x1,5	20,5	28	0,4	20
145240	29	58	65	25	32	25	22	M20x1,5	25,5	31	0,7	32
145241	37	72	80	32	40	32	28	M27x2	30	38	1,2	50
145242	46	90	97	40	50	40	34	M33x2	39	47	2,1	80
145243	57	110	120	50	63	50	42	M42x2	47	58	4,4	125
145244	64	136	140	63	72,5	63	53,5	M48x2	58	70	7,6	200
145245	86	170	180	80	92	80	68	M64x3	74	91	14,5	320
148724	96	212	210	100	114	100	85,5	M80x3	94	110	28	500
148726	113	265	260	125	160	125	105	M100x3	116	135	43	800
148727	126	326	310	160	200	160	133	M125x4	145	165	80	1250

Gabel-Lagerbock mit Kuppelbolzen AB3 ISO 8132 Form B



Für größere Abmessungen bitte im Werk nachfragen.

Teile- Nr.	CK H9/m6	CL h16	CM A13	CO N9	FG JS14	FL js13	FO JS14	HB H13	KC +0,3	LE min.	MR max.	RF js13	RG js13	UK max.	UX max.	Gewicht kg	Belastbarkeit kN
0962120020	20	45	20	16	7,5	45	10	11	4,3	30	20	75	70	100	95	1,5	20
0962120025	25	56	25	25	10	55	10	13,5	5,4	37	25	90	85	120	115	3	32
0962120032	32	70	32	25	14,5	65	6	17,5	5,4	43	32	110	110	145	145	5	50
0962120040	40	90	40	36	17,5	76	6	22	8,4	52	40	140	125	185	170	9,6	80
0962120050	50	110	50	36	25	95	-	26	8,4	65	50	165	150	215	200	15,5	125
0962120063	63	140	63	50	33	112	-	33	11,4	75	63	210	170	270	230	27,5	200
0962120080	80	170	80	50	45	140	_	39	11,4	95	80	250	210	320	280	47	320

Lagerböcke AT4 ISO 8132

Für größere Abmessungen bitte im Werk nachfragen.

Bohrung Ø	Teile- Nr.	CO N9	CR H7	FK JS12	FN max.	FS js13	HB H13	KC +0,3	NH max.	TH js13	UL max.	Gewicht kg	Belastbarkeit kN
40	149333	16	20	45	70	10	11	4,3	21	60	90	1.2	20
50	149334	25	25	55	80	12	13,5	5,4	26	80	110	2.2	32
63	149335	25	32	65	100	15	17,5	5,4	33	110	150	4.7	50
80	149336	36	40	76	120	16	22	8,4	41	125	170	7.8	80
100	149337	36	50	95	140	20	26	8,4	51	160	210	14.3	125
125	149338	50	63	112	180	25	33	11,4	61	200	265	24	200
160	149339	50	80	140	220	31	39	11,4	81	250	325	53	320

Befestigungsinformationen

Befestigungsschrauben

Zur Befestigung der Zylinder an der Maschine sind Schrauben mit einer Festigkeit nach ISO 898/1, Klasse 12,9 auszuwählen. Das Anzugsmoment der Befestigungsschrauben ist nach den Herstellerdaten auszulegen.

Kopf- und **Bodenschrauben**

Wenn beim Abnehmen der Schrauben Schäden oder Korrosion festgestellt werden, müssen sie durch neue Schrauben ersetzt werden, die eine Mindestfestigkeit nach ISO 898/1, Klasse 12,9 aufweisen. Kopf- und Bodenschrauben sind immer diagonal und mit dem vorgeschriebenen Moment festzuziehen, das der Tabelle entnommen werden kann.

	Flansch	bolzen
Bohrung Ø	Anzugs- moment Nm	Bolzen- größe
40 50	36	M8
63 80	123	M12
100	196	M14
125 160 200	305	M16
250	595	M20
320	1030	M24

Zylindergewichte

Rundzylinder **Baureihe MMB**

Nachfolgende Tabelle zeigt die Gewichte der MMB-Zylinder in Abhängigkeit von der Befestigungsart bei Nullhub sowie das Mehrgewicht pro 10 mm Hub. Gewichte für Zubehörteile finden Sie auf Seite 10-12.

Dahmma	Chamma	Befe	stigungs	sart bei N	Nullhub,	in kg	pro
Bohrung Ø	Stange Nr.	MF1, MF2	MF3, MF4	MP3, MP5	MS2	MT4	10 mm Hub kg
40	1	6,72	7,13	6,27	8,27	6,64	0,08
40	2	6,75	7,16	6,30	8,30	6,67	0,10
F0	1	10,77	11,38	10,00	13,75	10,41	0,15
50	2	10,81	11,42	10,04	13,79	10,45	0,18
60	1	17,95	18,75	16,71	22,06	17,60	0,23
63	2	18,02	18,82	16,78	22,13	17,67	0,27
00	1	25,4	26,9	24,2	31,7	24,0	0,34
80	2	25,5	27,0	24,3	31,8	24,1	0,41
100	1	44,3	46,5	43,3	56,4	43,1	0,53
100	2	44,5	46,7	43,5	56,6	43,3	0,64
125	1	69,0	71,2	69,3	90,4	70,3	0,76
125	2	69,4	71,6	69,7	90,8	70,7	0,96
160	1	_	117,2	119,9	147,3	118,2	1,22
160	2	-	117,8	120,5	147,9	118,8	1,46
200	1	_	214,6	225,2	266,3	219,7	1,81
200	2	_	216,0	226,6	267,7	221,1	2,26
250	1	_	438,3	462,6	-	432,7	2,81
250	2	_	440,8	465,1	-	435,2	3,59
320	1	_	802,8	866,8	-	824,7	3,98
320	2	-	829,7	893,7	_	851,6	4,96

Berechnung des Zylinderdurchmessers

'Schub'-Anwendungen

Tabelle unten links benutzen, wenn der Zylinder auf Schub beansprucht wird.

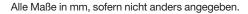
- Den zum Betriebsdruck n\u00e4chsth\u00f6heren Druck aus der Tabelle ausw\u00e4hlen.
- 2. In derselben Spalte die erforderliche Kraft für die zu bewegende Masse ermitteln (durch Rundung).
- 3. In derselben Zeile dann die erforderliche Zylinderbohrung

Sollten die Zylindermaße den für die Anwendung verfügbaren Einbauplatz übersteigen, die Berechnung ggf. mit erhöhtem Betriebsdruck wiederholen.

Bohrung	Kolben- fläche		Schu	ıbkraft Z	Zylinder	in kN	
Ø	Zylinder mm²	10 Bar	40 Bar	63 Bar	100 Bar	125 Bar	160 Bar
40	1257	1,3	5,0	7,9	12,6	15,7	20,1
50	1964	2,0	7,9	12,4	19,6	24,6	31,4
63	3118	3,1	12,5	19,6	31,2	39,0	49,9
80	5027	5,0	20,1	31,7	50,3	62,8	80,4
100	7855	7,9	31,4	49,5	78,6	98,2	126
125	12272	12,3	49,1	77,3	123	153	196
160	20106	20,1	80,4	127	201	251	322
200	31416	31,4	126	198	314	393	503
250	49087	49,1	196	309	491	614	785
320	80425	80,4	322	507	804	1005	1287

'Zug'-Anwendungen

Tabelle unten rechts benutzen, wenn der Zylinder auf Zug beansprucht wird. Bestimmung der Zugkraft:


- 1. Das oben angegebene Verfahren für Anwendungen bei Schubkraft anwenden (Tabelle unten links).
- 2. Anhand der Tabelle unten rechts die der Kolbenstange und dem Druck entsprechende Kraft ermitteln.
- Diesen Wert von dem aus der 'Schubtabelle' ermittelten Wert abziehen, so daß der resultierende Betrag die Ist-Kraft für die zu bewegende Last darstellt.

Sollte diese Kraft nicht ausreichend sein, die Berechnung ggf. bei größerem Systemdruck und Zylinderdurchmesser wiederholen.

Kolben-	Kolben- stangen-			ftreduzi enstange			
stange Ø	fläche mm²	10 Bar	40 Bar	63 Bar	100 Bar	125 Bar	160 Bar
22	380	0,4	1,5	2,4	3,8	4,8	6,1
28	616	0,6	2,5	3,9	6,2	7,7	9,9
36	1018	1,0	4,1	6,4	10,2	12,7	16,3
45	1590	1,6	6,4	10,0	15,9	19,9	25,5
56	2463	2,5	9,9	15,6	24,6	30,8	39,4
70	3848	3,8	15,4	24,2	38,5	48,1	61,6
90	6362	6,4	25,5	40,1	63,6	79,6	102
110	9503	9,5	38,0	59,9	95,1	119	152
140	15394	15,4	61,6	97,0	154	193	246
180	25447	25,4	102	160	254	318	407
220	38013	38,0	152	240	380	475	608

inPHorm

Umfassendere Informationen zur Berechnung des erforderlichen Zylinders können Sie dem Auswahlprogramm inPHorm für Zylinder HY07-1260/Eur entnehmen.

Ermittlung der Kolbenstangengröße

Die Auswahl der richtigen Kolbenstange für Schubbelastung wird wie folgt vorgenommen:

- Befestigungsart und Verbindungsart des Stangenendes festlegen. Den der Anwendung entsprechenden Hubfaktor anhand der Tabelle unten bestimmen.
- 2. Unter Berücksichtigung des Hubfaktors die sog. 'Grundlänge' aus folgender Formel bestimmen: Grundlänge = Hub x Hubfaktor (Das Diagramm zur 'Ermittlung des Kolbenstangendurchmessers' auf Seite 16 gilt für Standard-Stangenenden, gemessen von der äußeren Planfläche des Zylinderflansches. Bei Stangenenden über Standardlänge (Maß K größer als Standard) ist die zusätzliche Länge zum Hub zu addieren, um die Grundlänge zu erhalten).
- Ermittlung der Last für die Schubanwendung durch Multiplikation der vollen Kolbenfläche des Zylinders mit dem Systemdruck bzw. durch die Druck- und Zugkraft-Tabellen auf Seite 14.
- Aus den nunmehr bekannten Größen Grundlänge und Schubkraft wird im nachstehenden Diagramm zur Ermittlung des Kolbenstangendurchmessers der entsprechende Schnittpunkt bestimmt.

Die nächste, über diesem Schnittpunkt liegende Kurve gibt den geeigneten Stangendurchmesser an.

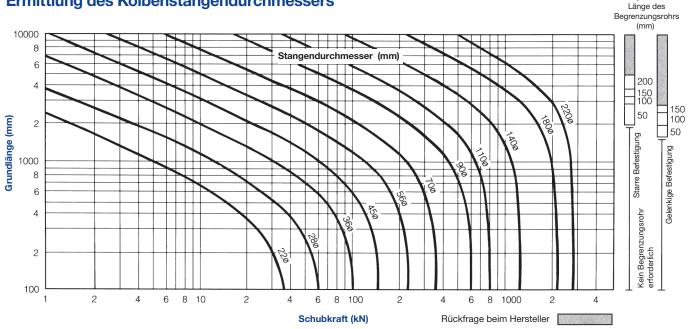
Bei Langhub-Zylindern für Zugbelastung genügen meistens die Standardzylinder mit den normalen Stangendurchmessern, sofern der Betriebsdruck kleiner Nenndruck ist.

Hubfaktoren

Befestigungsart	Anschluss am Stangenende	Befestigungsart	Hubfaktor
MF1 MF3 MS2 Kopfflansch- und Fußbefestigung	Fest eingespannt und starr geführt		0,5
MF1 MF3 MS2 Kopfflansch- und Fußbefestigung	Drehbar und starr geführt		0,7
MF2 Bodenflansch- MF4 befestigung	Fest eingespannt und starr geführt		1,0
MF2 Bodenflansch- und MF4 Schwenkzapfen- MT4 befestigung	Drehbar und starr geführt		1,5
MF1 MF3 MS2 Kopfflansch- und Fußbefestigung	Abgestützt, aber nicht starr geführt		2,0
MP3 Bodenseitige MP5 Bolzenbefestigung	Drehbar und starr geführt		2,0
MF2 Bodenflansch- MF4 befestigung	Abgestützt, aber nicht starr geführt		4,0
MP3 Bodenseitige MP5 Bolzenbefestigung	Abgestützt, aber nicht starr geführt		4,0

inPHorm

Für die genaue Dimensionierung des Zylinders empfehlen wir die Verwendung der Berechnungssoftware inPhorm HY07-1260/EUR.

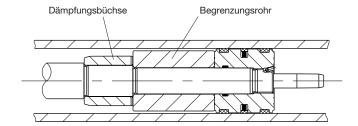


Empfohlene

KRAUSE+KÄHLER

Rundzylinder **Baureihe MMB**

Ermittlung des Kolbenstangendurchmessers


Langhub-Zylinder und Begrenzungsrohre

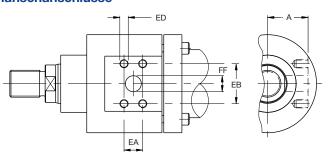
Bei Langhub-Zylindern für Schubbelastung ist zur Verringerung der Lagerbelastungen der Einbau von Begrenzungsrohren zu erwägen. Die erforderliche Länge des Begrenzungsrohrs wird in Höhe des Schnittpunktes an der rechten Diagrammseite abgelesen. Je nach starrer oder gelenkiger Befestigung sind die Anforderungen an das Begrenzungsrohr verschieden.

Fällt die erforderliche Länge des Begrenzungsrohrs in den Bereich 'Bitte Rückfrage', bitten wir um Angabe folgender Daten:

- 1. Befestigungsart des Zylinders
- 2. Verbindung zum Stangenende und Art der Lastführung
- 3. Zylinderbohrung, Hub und Länge des Stangenendes (Maß WF - VE), sofern größer als Standard.
- 4. Einbaulage des Zylinders (bei angewinkelter oder vertikaler Lage bitte Bewegungsrichtung der Kolbenstange angeben).
- 5. Betriebsdruck des Zylinders, sofern dieser unter dem Nenndruck liegt.

Wird ein Zylinder mit einem Begrenzungsrohr spezifiert, so fügen Sie bitte ein S (Spezial) sowie den Arbeitshub des Zylinders in den Modellschlüssel ein. Die Länge des Begrenzungsrohrs geben Sie bitte im Klartext an. Darauf achten, daß der Nettohub gleich dem Bruttohub des Zylinders minus der Länge des Begrenzungsrohr ist. Der Bruttohub bestimmt die äußeren Abmessungen des Zylinders.

Anschlussgröße und Kolbengeschwindigkeit


In den nebenstehenden Tabellen werden die Kolbengeschwindigkeiten für Standard- und übergroße Anschlüsse sowie für Verbindungsleitungen angezeigt, wobei die Geschwindigkeit des Druckmediums 5 m/s beträgt. Wenn die gewünschte Kolbengeschwindigkeit zu einer Fließgeschwindigkeit des Druckmediums von über 5 m/s führt, sollte die Verwendung von größeren Leitungen mit zwei Anschlüssen pro Boden erwogen werden. Parker empfiehlt, in den Verbindungsleitungen einen Durchfluss von 12 m/s nicht zu überschreiten.

Hinweis: wenn zu erwarten ist, daß die Kolbengeschwindigkeit 0,5 m/s überschreitet, bitten wir um Rückfrage.

		Standard Zylin	deranschlüss	е
Bohrung Ø	Anschluß- größe (BSPP))	Verbindungs- leitungen innen	Strom Bodenseite bei 5 m/s	Hub- geschwindig- keit m/s
40	G¹/2	13	40	0,53
50	G¹/ ₂	13	40	0,34
63	G ³ / ₄	15	53	0,28
80	G ³ / ₄	15	53	0,18
100	G1	19	85	0,18
125	G1	19	85	0,12
160	G1 ¹ / ₄	24	136	0,11
200	G1 ¹ / ₄	24	136	0,07
250	G1 ¹ / ₂	30	212	0,07
320	G1 ¹ / ₂	30	212	0,04

		Übergroße Zylin	deranschlüs	se
Bohrung Ø	Anschluß- größe (BSPP)	Verbindungs- leitungen innen	Strom Bodenseite bei 5 m/s	Hub- geschwindig- keit m/s
40	G ³ / ₄	15	53	0,70
50	G ³ / ₄	15	53	0,45
63	G1	19	85	0,45
80	G1	19	85	0,28
100	G1 ¹ / ₄	24	136	0,29
125	G1 ¹ / ₄	24	136	0,18
160	G1 ¹ / ₂	30	212	0,17
200	G1 ¹ / ₂	30	212	0,11
250	G2	38	340	0,11
320	G2	38	340	0,07

Flanschanschlüsse

Anschlußarten

Zylinder der Baureihe MMB haben standardmäßig einen Hydraulikanschluss nach ISO 1179-1 mit zölligem Gewinde (BSPP). Alternativ stehen Hydraulikanschlüsse mit metrischem Gewinde nach ISO 9974-1 bzw. ISO 6149 zur Auswahl. Flanschanschlüsse nach ISO 6162 sind ebenfalls lieferbar. Bei Anwendungen für höhere Zylindergeschwindigkeiten kann ein größerer oder ein zusätzlicher Anschluss gewählt werden.

Bohrung	Stan	dard Ansc	hlüsse	Über	große Ans	chlüsse
Ø	BSPP	Metrisch	DN Flansch	BSPP	Metrisch	DN Flansch
40	G¹/ ₂	M22x1,5	_	G ³ / ₄	M27x2	-
50	G¹/ ₂	M22x1,5	_	G ³ / ₄	M27x2	_
63	G ³ / ₄	M27x2	13	G1	M33x2	-
80	G ³ / ₄	M27x2	13	G1	M33x2	_
100	G1	M33x2	19	G1 ¹ / ₄	M42x2	25
125	G1	M33x2	19	G1 ¹ / ₄	M42x2	25
160	G1 ¹ / ₄	M42x2	25	G1 ¹ / ₂	M48x2	32
200	G1 ¹ / ₄	M42x2	25	G1 ¹ / ₂	M48x2	32
250	G1 ¹ / ₂	M48x2	32	G2	M60x2	38
320	G1 ¹ / ₂	M48x2	32	G2	M60x2	38

Anschluß- und Flanschgrößen

Bohrung		Standard Flanschanschlüsse								
Ø	DN Flansch	Α	EA	ЕВ	ED	FF Ø				
63	13 -	51	17.5	38,1	M8x1,25	13				
80	13	58	17,5	30,1	IVIOX 1,25	13				
100	19 -	71	22,2	47.6	M10x1,5	19				
125	19	89	22,2	41,0	WHUX1,5	19				
160	25 -	110	00.0	FO 4	M40v4 F	O.F.				
200	25 -	137	26,2	52,4	M10x1,5	25				
250	20	177	20.0	F0.7	Miori	00				
320	32 -	220	30,2	58,7	M10x1,5	32				

Bohrung	Übergroße Flanschanschlüsse					
Ø	DN Flansch	Α	EA	EB	ED	FF Ø
100	25 -	69	26,2	52,4	M10x1,5	25
125		87				
160	32 -	107	30,2	58,7	M10x1,5	32
200		135				
250	38 ¹ -	173	00 F	70.0	Micho	38
320		217	36,5	79,3	M16x2	30

¹ Baureihe 400 bar

Was bedeutet Endlagendämpfung?

Mit der Endlagendämpfung wird die bewegte Masse kontrolliert abgebremst. Sie empfiehlt sich, wenn der volle Hub mit einer Kolbengeschwindigkeit über 0,1 m/s gefahren wird. Außerdem steigert die Endlagendämpfung die Lebensdauer der Zylinder und verringert Betriebsgeräusch sowie Druckstöße.

Dämpfung ist sowohl kopf- als auch bodenseitig möglich, ohne die Abmessungen und Einbaumaße des Zylinders zu verändern. Das Dämpfungsverhalten ist über versenkte Nadelventile einstellbar.

Standard-Dämpfung

Bei einem idealen Dämpfungseffekt erfolgt eine nahezu gleichförmige Energieaufnahme über den gesamten Dämpfungsweg. Es gibt zahlreiche Dämpfungsverfahren mit spezifischen Eigenschaften und Vorteilen. Um vielseitige Einsatzmöglichkeiten realisieren zu können, sind Zylinder der Baureihe MMB mit einer gestuften Dämpfung ausgestattet. Die Wirkung der gestuften Dämpfung auf die jeweiligen Stangengrößen ist im Schaubild auf Seite 19 gezeigt.

Alternative Dämpfungen

Zur Komplettierung der serienmäßig angebotenen Dämpfungsart können besondere Dämpfungsausführungen für Einsätze mit höherer Energieaufnahme entwickelt werden.

Dämpfungslänge

Die Endlagendämpfung aller MMB-Zylinder weist längstmögliche Dämpfungsbüchsen und -zapfen im Rahmen der Normzylinderabmessungen auf, ohne die Kolben-und Stangenführungslängen zu reduzieren, s. Tabelle Dämpfungslängen Seite 19.

Dämpfungsberechnung

Die Diagramme auf Seite 19 zeigen das Energieabsorptionsvermögen der einzelnen Bohrungs-/Stangenkombinationen am Kopf (Ring) und am Boden (volle Bohrung). Die Diagramme gelten für Kolbengeschwindigkeiten im Bereich 0,1 bis 0,3 m/s. Im Bereich 0,3 bis 0,5 m/s sind die Energiewerte um 25% zu vermindern. Bei Geschwindigkeiten unter 0,1 m/s mit hohen Bremsmassen und bei solchen über 0,5 m/s sind ggf. spezielle Dämpfungsprofile erforderlich.

Das Kopfende hat ein geringeres Dämpfungsvermögen als der Zylinderboden. Durch Druckverstärkung am Kolben fällt dieses Dämpfungsvermögen bei hohen Arbeitsdrücken bis auf Null.

Die Fähigkeit zur Energieaufnahme nimmt bei steigendem Verfahrdruck ab, der im normalen Hydraulikkreis dem Einstellwert des Druckbegrenzungsventils entspricht.

inPHorm

Die Dämpfungsanforderungen lassen sich mit Hilfe des Auswahlprogramms inPHorm für Zylinder HY07-1260/Eur automatisch für einzelne Zylinder-/Lastkombinationen berechnen.

Formeln

Für Berechnung bei horizontalen Anwendungen gilt die Formel: $E = \frac{1}{2}mv^2$. Ist die Zylinderachse gegenüber der Horizontalen geneigt, dann gilt:

 $E = \frac{1}{2}mv^2 + mgl \times 10^{-3} \times sin\alpha$ – (abwärts bewegte Masse)

 $E = \frac{1}{2}mv^2 - mgl \times 10^{-3} \times sin\alpha$ – (aufwärts bewegte Masse)

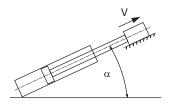
wobei,

E = aufgenommene Energie in Joule g = Erdbeschleunigung = 9,81 m/s²

v = Geschwindigkeit in m/s

I = Dämpfungslänge in mm (siehe Seite 19)

m = Masse in kg (einschließlich Kolben- und Stangenmasse mit Zubehör, s. Seiten 10-12 und 19)


 α = Neigungswinkel zur Horizontalen in Grad

p = Druck in bar

Beispiel

Im folgenden Beispiel wird gezeigt, wie man die von linear bewegten Massen erzeugte Energie berechnet. Bei nichtlinearen Bewegungen, bei denen andere Formeln verwendet werden, wenden Sie

sich bitte an uns. Im Beispiel wird vorausgesetzt, daß die ausgewählten Bohrungs- und Stangendurchmesser der Anwendung entsprechen. Die Reibung auf Zylinder und Masse wird vernachlässigt.

Bohrung/Stange = 125/90 mm (Stange Nr. 2),

Dämpfung kopfseitig

 $\begin{array}{lll} \text{Druck} & = & 160 \text{ bar} \\ \text{Masse} & = & 10000 \text{ kg} \\ \text{Geschwindigkeit} & = & 0,5 \text{ m/s} \\ \text{Dämpfungslänge} & = & 40 \text{ mm} \\ \alpha & = & 15^{\circ} \\ \text{Sin}\alpha & = & 0,26 \end{array}$

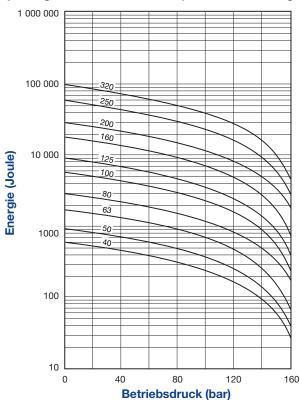
 $E = \frac{1}{2} \text{mv}^2 - \text{mgl x } 10^{-3} \text{ x } \sin \alpha$

 $E = \underline{10000 \times 0.5^2} - 10000 \times 9.81 \times \underline{40} \times 0.26$

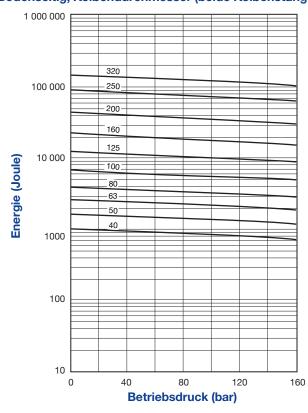
E = 1250 - 1020 = 230 Joules

Beachten: Da die Geschwindigkeit 0,3 m/s übersteigt, muß diese Energie in den Kurven der Dämpfungstabelle auf Seite 19 noch um 25% verringert werden – s. Dämpfungsberechnung gegenüber. Der Vergleich mit der Kurve in der Dämpfungstabelle für diesen Zylinder ergibt eine Energieaufnahmekapazität bei kopfseitiger Dämpfung von 400 Joule. Wenn diese um 25% verringert wird, ergibt sich eine Kapazität von 300 Joule, so daß die Standarddämpfung die 230 Joule in diesem Beispiel sicher abbremsen kann.

Wenn die Werte der Dämpfungsleistung kritisch sind, können unsere Techniker eine Computersimulation durchführen und dabei die genaue Dämpfungsleistung bestimmen – Einzelheiten auf Rückfrage.


KRAUSE+KÄHLER

Energieabsorptionsvermögen


Die unten gezeigten Daten beziehen sich auf die dauerfeste Auslegung des Zylinderrohres unter Maximaldruck. Bei erwarteten Arbeitszyklen (Doppelhübe) unter 106 kann eine

erhöhte Dämpfungswirkung vorgesehen werden. Für nähere Angaben bitten wir um Rückfrage.

Kopfseitig, Kolbendurchmesser (beide Kolbenstangen)

Bodenseitig, Kolbendurchmesser (beide Kolbenstangen)

Dämpfungslänge

Bohrung Ø	Stange Nr.	Dämpfungslänge		
		Kopf	Boden	
40	1 2	30	30	
50	1 2	30	30	
63	1 2	30	30	
80	1 2	35	35	
100	1 2	35	35	
125	1 2	40	40	
160	1 2	40	40	
200	1 2	45	45	
250	1 2	45	45	
320	1 2	50	50	

Kolben- und Stangenmasse

Borhrung Ø	Stange Nr.	Stange Ø	Kolben/Stange Grundgewicht kg	Stangengewicht pro 10 mm Hub kg	
40	1	22	0,7	0,03	
40	2	28	1,0	- 0,05	
50	1	20	1,3		
50	2	36	1,8	- 0,08	
63	1		2,3	0,00	
	2	45	2,9	- 0,12	
80	1	40	4,3	0,12	
	2	56	5,6	0,19	
100	1	30	8,5	0,19	
100	2	70	11	0,30	
125	1	70	15		
125	2	90	21	0,50	
160	1		29	0,50	
100	2	110	36	0,75	
200	1	110	54	0,75	
200	2	140	72	- 1,2	
250	1	1-70	105	1,2	
	2	180	137	- 2,0	
320	1		208	2,0	
020	2	220	265	3,0	

Eigenschaften der Dichtungen und Druckmedien

Vgl. Stangen- und Kolbendichtungsoptionen auf Seite 4

Klasse	Dichtungswerkstoffe	Druckmedium nach ISO 6743/4-1982	Temperaturbereich
1	Nitril (NBR), PTFE, verstärkte Polyurethane (AU)	Mineralöl HH, HL, HLP, HLP-D, HM, HV, MIL-H-5606 Öl, Luft, Stickstoff	-20°C bis +80°C
2	Nitril (NBR), PTFE	Wasserglycol (HFC)	-20°C bis +60°C
5	Fluor-Elastomer (FPM), PTFE	Schwer entflammbare Medien auf Phosphatesterbasis (HFD-R) Auch für Mineralöl bei hohen Temperaturen geeignet. Nicht für Skydrol. Hinweise des Herstellers beachten.	-20°C bis +150°C
6	Diverse Verbundstoffe, darunter Nitril, verstärktes Polyurethan,	Wasser Öl-in-Wasser-Emulsion 95/5 (HFA)	+5°C bis +55°C
7	Fluor-Elastomere und PTFE	Wasser-in-Öl-Emulsion 60/40 (HFB)	+5°C bis +60°C

Spezialdichtungen

Eine Reihe von Dichtungen ist für jedes der o.g. Druckmedien erhältlich – siehe 'Modellschlüssel' auf Seite 23. Zusätzlich zu den oben gezeigten Gruppen werden auch Spezialdichtungen geliefert. Den Bestellschlüssel mit S (Spezial) ergänzen und das vorgesehene Druckmedium angeben.

Dichtungsklasse 6 - Dichtungslebensdauer

Dichtungen, die mit stark wasserhaltigen Flüssigkeiten (HFA) benutzt werden, sind erhöhtem Verschleiß augesetzt wegen der verminderten Schmiereigenschaften des verwendeten Mediums. Dieses Problem nimmt mit steigendem Druck zu.

Reibungsarme Dichtungen

Für Anwendungen, wo reibungsarmer und stick-slip-freier Betrieb notwendig ist, sind spezielle Servodichtungen lieferbar. Bitte Rückfrage beim Hersteller.

Wasserbetrieb

Beim Einsatz von Wasser als Druckmedium werden die Zylinder mit verchromten Edelstahl-Kolbenstangen, Spezialdichtwerkstoffen und beschichteten Innenflächen geliefert. Bitte geben Sie bei der Bestellung den Höchstdruck bzw. Last und Geschwindigkeit an, da Edelstahl-Kolbenstangen über eine geringere Zugfestigkeit verfügen als solche mit Standardwerkstoffen.

Filterung

Der Reinheitsgrad des Druckmediums muß ISO 4406 erfüllen. Die Qualität der Filter ist anhand der geeigneten ISO-Normen abzustimmen.

Die erforderliche Filterfeinheit hängt von den System-komponenten und der jeweiligen Anwendung ab. Als Mindestanforderung für hydraulische Systeme gilt die Klasse 19/15 nach ISO 4406, was einer Filterfeinheit von 25 μ ($\beta10{\ge}75$) nach ISO 4572 entspricht.

Garantie

Parker Hannifin garantiert, daß Zylinder, die zum Betrieb mit Wasser oder wasserhaltigen Flüssigkeiten bestimmt sind, frei von Material- oder Ausführungsschäden sind, übernimmt jedoch keine Haftung für vorzeitigen Ausfall, der durch übermäßige Abnutzung aufgrund von mangelnder Schmierung entstanden ist, und auch nicht für Ausfall durch Korrosion, Elektrolyse oder Mineralablagerungen.

Reparaturen

Die Zylinder der Baureihe MMB sind wartungs- und reparaturfreundlich, doch lassen sich bestimmte Arbeiten nur in unserem Werk ausführen. Es entspricht der üblichen Verfahrensweise, einen zwecks Instandsetzung eingesandten Zylinder mit den erforderlichen Ersatzteilen auszurüsten, um ihn auf einen 'so gut wie neu' Zustand zu bringen. Spricht der Zustand des eingeschickten Zylinders jedoch gegen eine wirtschaftliche Reparatur, erhalten Sie umgehend Nachricht.

Standard-Kolbendichtung

140a Tragring für Standardbüchse

140b Tragringe für Standardbüchse

Tragring für Standard-Kolben

139a Tragring für Dachmanschettenbüchse

139b Tragringe für Dachmanschettenbüchse

O-Ring/Stützringkombination verwendet.

Tragring für Dachmanschettenkolben

Vorspannring für Standard-Kolbendichtung 125

Stützring für O-Ring Dichtungsbüchse/Kopf

Dachmanschettendichtungsgruppe für Kolben

Dachmanschetten-Kolbendichtungsbaugruppe

¹ Für einige Größen werden härtere O-Ringe statt einer

125

126

127

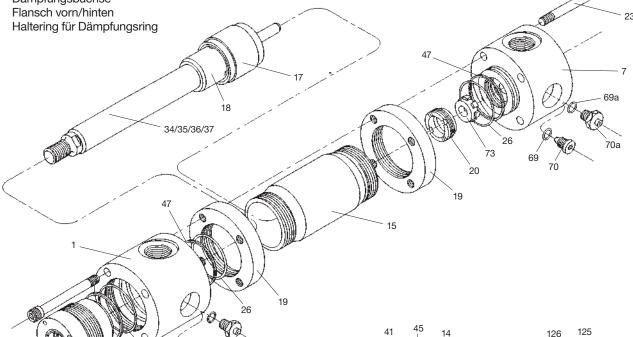
134¹

137

142

143

Reparatur- und Dichtungssätze

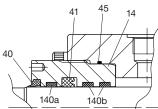

Bei Bestellung dieser Sätze sind die Daten auf dem Typenschild des Zylinders und damit folgende Informationen anzuführen:

Seriennummer - Bohrung - Hub - Modellnummer -Druckmedium

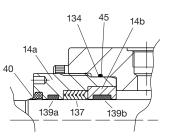
Teileliste

- 1 Kopf
- 7 Boden
- 14 Standardbüchse
- 14a Dachmanschettenbüchse
- 14b Dichtungsbüchsenlager
- 15 Zylinderrohr
- 17 Standardkolben
- Dachmanschettenkolben kopfseitig 17a
- Dachmanschettenkolben bodenseitig 17b
- 18 Dämpfungsbüchse

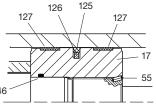
26 O-Ring für Abdichtung Rohr gegen Kopf bzw. Boden

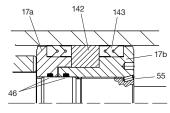

134

45


- 34 Kolbenstange - einseitig, ungedämpft
- 35 Kolbenstange - einseitig, kopfseitige Dämpfung
- Kolbenstange einseitig, bodenseitige Dämpfung 36
- 37 Kolbenstange - einseitig, beidseitige Dämpfung
- 40 Abstreifer
- Lipseal 41
- O-Ring (Büchse/Kopf) 45

14/14a


- O-Ring, Kolben/Stange (2 Stck Dachmanschettenkolben) 46
- Stützring für Abdichtung Rohr 26 47
- Sicherungsstift Kolben/Stange 55
- O-Ring zu Dämpfungsnadelventil 69
- O-Ring zu Dämpfungsnadelventil in Cartridgebauweise 69a
- 70 Nadelventil
- Nadelventil in Cartridgebauweise 70a
- 73 Selbstzentrierender Dämpfungsring



Dachmanschettenbüchse und -dichtungen

Standard-Kolben

Dachmanschettenkolben

Inhalt und Teilenummern der Dichtungssätze für Kolben und Büchse

(vgl. Zuordnung der Teilenummern auf voriger Seite)

Stangendichtsatz mit Dichtungsbüchse – Standard und Lasthalteoption

Enthält Positionen 14, 40, 41, 45, 134, 140a, 140b.

Stangendichtsatz mit Dichtungsbüchse – Dachmanschetten

Enthält Positionen 14a, 14b, 40, 45, 134, 137, 139a, 139b.

Stangendichtsatz ohne Dichtungsbüchse – Standard und Lasthalteoption

Enthält Positionen 40, 41, 45, 134, 140a, 140b.

Stangendichtsatz ohne Dichtungsbüchse – Dachmanschetten

Enthält Positionen 40, 45, 134, 137, 139a, 139b.

Kolbendichtsatz - Standard

Enthält Positionen 26, 46, 47, 125, 126, 127.

Kolbendichtsatz – Dachmanschetten und Lasthalteoption Enthält Positionen 26, 47, 55, 142, 143 und zweimal 46.

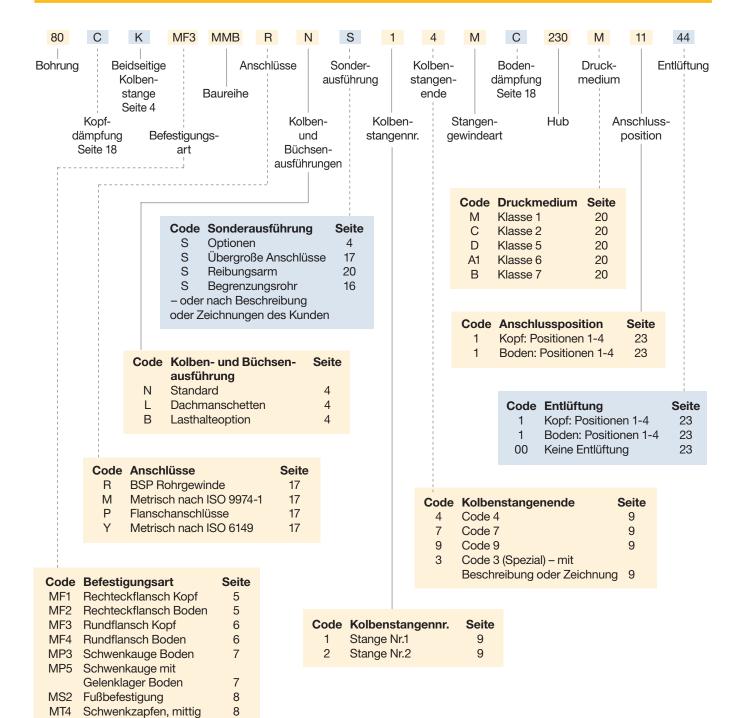
Dichtungsklassen – Bestellung

Alle Teilenummern in den Tabellen beziehen sich auf Standarddichtungen der Klasse 1. Zur Bestellung von Sätzen mit anderen Dichtungsklassen ist die letzte Stelle der angezeigten Teilenummer durch die Nummer der erforderlichen Dichtungsklasse zu ersetzen. Beispiel: RG04MMB0221 mit einer Dichtung der Klasse 1 wird zu RG04MMB0225, wenn eine Dichtung an der Klasse 5 enthalten sind.

Bestellnummern für Kolbendichtsätze

Bohrung Ø	Kolbendichtsatz – Standard	Kolbendichtsatz – Dachmanschetten und Lasthalteoption
40	PN040MMB01	PL040MMB01
50	PN050MMB01	PL050MMB01
63	PN063MMB01	PL063MMB01
80	PN080MMB01	PL080MMB01
100	PN100MMB01	PL100MMB01
125	PN125MMB01	PL125MMB01
160	PN160MMB01	PL160MMB01
200	PN200MMB01	PL200MMB01
250	PN250MMB01	PL250MMB01
320	PN320MMB01	PL320MMB01

Bestellnummern für Stangendichtsätze

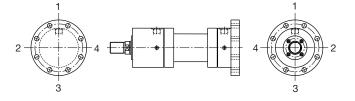

Bohrung Ø	Stange Ø	Stangendichtsatz mit Dichtungsbüchse – Standard und Lasthalteoption	Stangendichtsatz mit Dichtungsbüchse – Dachmanschetten	Stangendichtsatz ohne Dichtungsbüchse – Standard und Lasthalteoption	Stangendichtsatz ohne Dichtungsbüchse – Dachmanschetten
40	22	RG04MMB0221	RGL04MMB0221	RK04MMB0221	RKL04MMB0221
40	28	RG04MMB0281	RGL04MMB0281	RK04MMB0281	RKL04MMB0281
50	20	RG05MMB0281	RGL05MMB0281	RK05MMB0281	RKL05MMB0281
50	36	RG05MMB0361	RGL05MMB0361	RK05MMB0361	RKL05MMB0361
63	30	RG06MMB0361	RGL06MMB0361	RK06MMB0361	RKL06MMB0361
03	45	RG06MMB0451	RGL06MMB0451	RK06MMB0451	RKL06MMB0451
80		RG08MMB0451	RGL08MMB0451	RK08MMB0451	RKL08MMB0451
00	56	RG08MMB0561	RGL08MMB0561	RK08MMB0561	RKL08MMB0561
100		RG10MMB0561	RGL10MMB0561	RK10MMB0561	RKL10MMB0561
100	—	RG10MMB0701	RGL10MMB0701	RK10MMB0701	RKL10MMB0701
125		RG12MMB0701	RGL12MMB0701	RK12MMB0701	RKL12MMB0701
125	90	RG12MMB0901	RGL12MMB0901	RK12MMB0901	RKL12MMB0901
160		RG16MMB0901	RGL16MMB0901	RK16MMB0901	RKL16MMB0901
100		RG16MMB1101	RGL16MMB1101	RK16MMB1101	RKL16MMB1101
200		RG20MMB1101	RGL20MMB1101	RK20MMB1101	RKL20MMB1101
200	140	RG20MMB1401	RGL20MMB1401	RK20MMB1401	RKL20MMB1401
250		RG25MMB1401	RGL25MMB1401	RK25MMB1401	RKL25MMB1401
230	180	RG25MMB1801	RGL25MMB1801	RK25MMB1801	RKL25MMB1801
220	100	RG32MMB1801	RGL32MMB1801	RK32MMB1801	RKL32MMB1801
320	320 ————	RG32MMB2201	RGL32MMB2201	RK32MMB2201	RKL32MMB2201

KRAUSE+KÄHLER

Rundzylinder

Baureihe MMB

Erklärung


Maßgebliche Angabe Option

Zylinder mit beidseitiger Kolbenstange

100 K MF3 MMB R N 1 4 M 1 4 M 180 A1 11 44

Position der Anschlüsse, der Entlüftung und der einstellbaren Endlagendämpfung

Zylinderanschlüsse sind standardmäßig in Position 1. Nadel- und Rückschlagventil der Endlagendämpfung sind standardmäßig in Position 2.

Parker weltweit

Europa, Naher Osten, Afrika

AE - Vereinigte Arabische Emirate, Dubai Tel: +971 4 8127100 parker.me@parker.com

AT - Österreich, Wiener Neustadt Tel: +43 (0)2622 23501-0 parker.austria@parker.com

AT - Osteuropa, Wiener Neustadt Tel: +43 (0)2622 23501 900 parker.easteurope@parker.com

AZ - Aserbaidschan, Baku Tel: +994 50 2233 458 parker.azerbaijan@parker.com

BE/LU - Belgien, Nivelles Tel: +32 (0)67 280 900 parker.belgium@parker.com

BY - Weißrussland, Minsk Tel: +375 17 209 9399 parker.belarus@parker.com

CH - Schweiz, Etoy, Tel: +41 (0)21 821 87 00 parker.switzerland@parker.com

CZ - Tschechische Republik, Klecany

Tel: +420 284 083 111 parker.czechrepublic@parker.com

DE - Deutschland, Kaarst Tel: +49 (0)2131 4016 0 parker.germany@parker.com

DK - Dänemark, Ballerup Tel: +45 43 56 04 00 parker.denmark@parker.com

ES - Spanien, Madrid Tel: +34 902 330 001 parker.spain@parker.com

FI - Finnland, Vantaa Tel: +358 (0)20 753 2500 parker.finland@parker.com

FR - Frankreich, Contamine s/Arve

Tel: +33 (0)4 50 25 80 25 parker.france@parker.com

GR - Griechenland, Athen Tel: +30 210 933 6450 parker.greece@parker.com

HU - Ungarn, Budapest Tel: +36 1 220 4155 parker.hungary@parker.com

IE - Irland, Dublin Tel: +353 (0)1 466 6370 parker.ireland@parker.com IT - Italien, Corsico (MI) Tel: +39 02 45 19 21 parker.italy@parker.com

KZ - Kasachstan, Almaty Tel: +7 7272 505 800 parker.easteurope@parker.com

NL - Niederlande, Oldenzaal Tel: +31 (0)541 585 000 parker.nl@parker.com

NO - Norwegen, Asker Tel: +47 66 75 34 00 parker.norway@parker.com

PL - Polen, Warschau Tel: +48 (0)22 573 24 00 parker.poland@parker.com

PT - Portugal, Leca da Palmeira Tel: +351 22 999 7360 parker.portugal@parker.com

RO - Rumänien, Bukarest Tel: +40 21 252 1382 parker.romania@parker.com

RU - Russland, Moskau Tel: +7 495 645-2156 parker.russia@parker.com

SE - Schweden, Spånga Tel: +46 (0)8 59 79 50 00 parker.sweden@parker.com

SK - Slowakei, Banská Bystrica Tel: +421 484 162 252 parker.slovakia@parker.com

SL - Slowenien, Novo Mesto Tel: +386 7 337 6650 parker.slovenia@parker.com

TR - Türkei, Istanbul Tel: +90 216 4997081 parker.turkey@parker.com

UA - Ukraine, Kiew Tel +380 44 494 2731 parker.ukraine@parker.com

UK - Großbritannien, Warwick Tel: +44 (0)1926 317 878 parker.uk@parker.com

ZA - Republik Südafrika, Kempton Park Tel: +27 (0)11 961 0700 parker.southafrica@parker.com

Europäisches Produktinformationszentrum Kostenlose Rufnummer: 00 800 27 27 5374 (von AT, BE, CH, CZ, DE, DK, EE, ES, FI, FR, IE, IL, IS, IT, LU, MT, NL, NO, PL, PT, RU, SE, SK, UK, ZA)

Nordamerika

CA - Kanada, Milton, Ontario Tel: +1 905 693 3000

US - USA, Cleveland (Industrieanwendungen) Tel: +1 216 896 3000

US - USA, Elk Grove Village (Mobilanwendungen) Tel: +1 847 258 6200

Asien-Pazifik

AU - Australien, Castle Hill Tel: +61 (0)2-9634 7777

CN - China, Schanghai Tel: +86 21 2899 5000

HK - Hong Kong Tel: +852 2428 8008

IN - Indien, Mumbai Tel: +91 22 6513 7081-85

JP - Japan, Fujisawa Tel: +81 (0)4 6635 3050

KR - Korea, Seoul Tel: +82 2 559 0400

MY - Malaysia, Shah Alam Tel: +60 3 7849 0800

NZ - Neuseeland, Mt Wellington Tel: +64 9 574 1744

SG - Singapur Tel: +65 6887 6300

TH - Thailand, Bangkok Tel: +662 717 8140

TW - Taiwan, Taipei Tel: +886 2 2298 8987

Südamerika

AR - Argentinien, Buenos Aires Tel: +54 3327 44 4129

BR - Brasilien, Cachoeirinha RS Tel: +55 51 3470 9144

CL - Chile, Santiago Tel: +56 2 623 1216

MX - Mexico, Apodaca Tel: +52 81 8156 6000

© 2013 Parker Hannifin Corporation. Alle Rechte vorbehalten.

Parker Hannifin GmbH

Pat-Parker-Platz 1 41564 Kaarst

Tel.: +49 (0)2131 4016 0 Fax: +49 (0)2131 4016 9199 parker.germany@parker.com www.parker.com

Katalog HY07-1215/DE POD 04/2013 ZZ