

HMI/HMD Hydraulikzylinder

Metrische Zugstangenzylinder für Betriebsdrücke bis 210 bar

aerospace
climate control
electromechanical
filtration
fluid & gas handling
hydraulics
pneumatics
process control
sealing & shielding

Einleitung

Zugstangenzylinder Baureihe HMI/HMD

Einführung

Die in diesem Katalog beschriebenen Zylinder der Baureihen HMI und HMD sind kompakte Zylinder entsprechend ISO 6020/2 und DIN 24 554, die, in Abhängigkeit vom Stangenende und vom Einsatztyp, für Betriebsdrücke bis zu 210 Bar ausgelegt sind. Sie wurden im Hinblick auf die Anforderungen einer Vielzahl von Industrien konstruiert, in denen Zylinder entsprechend dem ISO- oder DIN-Standard spezifiziert sind.

Außer den im Katalog geschilderten Standardzylindern konstruieren wir HMI- und HMD-Zylinder natürlich auch nach Kundenwunsch. Unsere Techniker beraten Sie gern bei der Abstimmung von Sonderausführungen für Ihren speziellen Anwendungsfall.

Hinweise zur Verwendung dieses Katalogs

In diesem Katalog werden die Zylinderbaureihe HMD, entsprechend DIN 24 554, und die umfangreichere Zylinderbaureihe HMI, entsprechend ISO 6020/2 (1991), beschrieben. Alle Daten gelten für die Baureihe HMI. Wenn sich die Informationen für beide Baureihen unterscheiden, sind die Daten für die HMD-Zylinder gelb markiert.

inPHorm und 3D-CAD

Parker bietet auch eine leicht zu bedienende Software, mit der die Auswahl des Zylinders vereinfacht wird. Das spart Ihnen Zeit und sichert die Genauigkeit von Konstruktionen und Zeichnungen. Besuchen Sie uns auf www.parker.com/eu, oder wenden Sie sich an Ihr Verkaufsbüro vor Ort, wenn Sie weitere Informationen erhalten möchten.

Inhalt	Seite
Vergleich der Zylinderbaureihen nach ISO und DIN	3
Merkmale und Vorteile der Konstruktion	4
Optionale Leistungsmerkmale	6
Befestigungsarten	7
Zylinderabmessungen	8
Zylinder mit beidseitiger Kolbenstange	12
Zubehör	13
Informationen zur Befestigung	16
Hubtoleranzen	17
Schub- und Zugkräfte	17
Auswahl der Kolbenstangengröße	18
Begrenzungsrohre	19
Langhubige Zylinder	19
Endlagendämpfung	20
Druckeinschränkungen	23
Anschlüsse	24
Kolbengeschwindigkeiten	24
Dichtungen & Druckmedien	25
Massen	25
Ersatzteile und Kundendienst	26
Reparaturen	27
Angaben zum Kolbenstangenende und Gewinde	28
Bestellhinweise für Zylinder	29

Parker bietet die umfangreichste Palette an Zylindern für die Industrie

Hohe Produktivität – Geringe Betriebskosten

Parker hat ein umfangreiches Angebot an Standardzylindern sowie speziellen Zylindern mit Zugstangen, an Rundzylindern, an gefrästen sowie an Kompakt- oder Blockzylindern für alle denkbaren Zylinderanwendungen in der Industrie. Unsere Zylinder sind entsprechend der Standards ISO, DIN, NFPA, ANSI und JIC verfügbar, andere Zertifizierungen stehen auf Anforderung zur Verfügung. Alle Hydrozylinder von Parker sind für einen langen und effektiven Einsatz bei gleichzeitig geringen

Wartungsanforderungen konzipiert, wodurch Jahr für Jahr eine hohe Produktivität garantiert werden kann.

Über Parker Hannifin

Parker Hannifin ist der weltweit führende Hersteller von Bewegungs- und Steuertechnologien und arbeitet eng mit seinen Kunden zusammen, mit dem Ziel, deren Produktivität und Rentabilität zu erhöhen. Das Unternehmen beschäftigt mehr als 62.000 Mitarbeiter in 48 Ländern auf der ganzen Welt und bietet seinen Kunden technische Spitzenleistungen und einen erstklassigen Kundendienst.

Besuchen Sie uns auf www.parker.com

Warnung

VERSAGEN, FALSCHE AUSWAHL ODER FALSCHE BENUTZUNG DER HIER BESCHRIEBENEN PRODUKTE UND/ODER SYSTEME ODER ZUGEHÖRIGER TEILE KANN ZU TÖDLICHEN UNFÄLLEN, PERSONENSCHÄDEN UND SACHSCHÄDEN FÜHREN.

Dieses Dokument sowie weitere Informationsblätter der Parker Hannifin GmbH, ihrer Niederlassungen, Vertriebsbüros und Vertragshändler, enthalten Informationen zu Produkt- oder Systemoptionen zur weiteren Verwendung durch Benutzer, die über das dafür erforderliche Fachwissen verfügen. Bevor Sie ein Produkt oder System auswählen oder einsetzen, ist es wichtig, dass Sie alle Aspekte Ihrer Anwendung gründlich analysieren und die produkt- bzw. systemspezifischen Informationen im aktuellen Produktkatalog studieren. Aufgrund der großen Vielfalt von Betriebsbedingungen und Anwendungsgebieten für diese Produkte bzw. Systeme ist der Benutzer auf der Grundlage seiner eigenen Analysen und Versuche allein für die abschließende Auswahl der Produkte und Systeme verantwortlich. Er hat zu gewährleisten, dass alle Leistungs- und Sicherheitsanforderungen für die entsprechende Anwendung eingehalten werden.

Die in dem vorliegenden Dokument beschriebenen Produkte, einschließlich, ohne jedoch darauf beschränkt zu sein, Produktmerkmale, technische Eigenschaften, Pläne, Verfügbarkeit und Preise, können jederzeit und ohne Vorankündigung durch die Parker Hannifin GmbH und ihre Niederlassungen abgeändert werden.

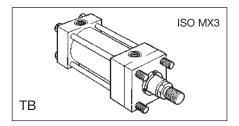
ISO und DIN im Vergleich

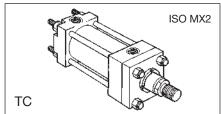
ISO und DIN im Vergleich

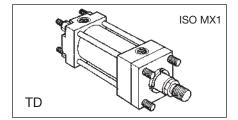
Die metrischen Zylinder HMI und HMD von Parker sind als Kompakt-hydrozylinder nach ISO 6020/2 (1991) und DIN 24 554 konstruiert. Sie können für Betriebsdrücke bis 210 bar verwendet werden.

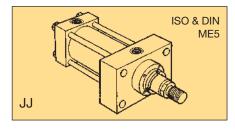
Die unten abgebildeten Zylinder entsprechen der ISO-Norm, wobei die fünf markierten Befestigungsarten außerdem der DIN 24 554 entsprechen. Die ISO- und DIN-Befestigungsarten dieser Zylinder sind austauschbar und unterscheiden sich voneinander nur durch die Flanschstärke der Befestigungsart JJ.

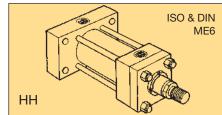
Zylinderbaureihe nach ISO 6020/2

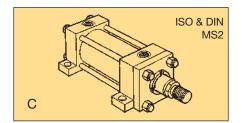

- 12 Standardbefestigungsarten
- Bis zu 3 Kolbenstangen pro Bohrung
- Bis zu 3 Außen- bzw. Innengewinde pro Bohrung
- Breites Angebot an Zubehör zur Zylinderbefestigung
- Breites Angebot an Sonderausführungen

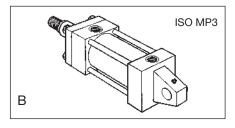

Zylinderbaureihe nach DIN 24 554

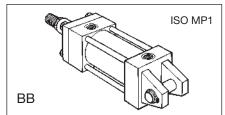

- 5 Befestigungsarten
- 2 Kolbenstangen pro Bohrung
- 1 Außengewinde am Kolbenstangenende pro Bohrung


Zylinderbaureihe nach ISO und DIN

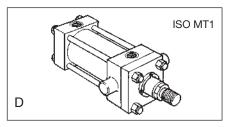

- Betriebsdrücke bis 210 bar
- Bohrungsdurchmesser von 25 bis 200 mm
- Kolbenstangendurchmesser von 12 bis 140 mm
- Ein- und beidseitige Kolbenstange möglich
- Hübe in praktisch allen Längen möglich
- Dämpfung wahlweise ein- bzw. beidseitig
- Druckmedien und Dichtungen fünf Dichtungstypen für den Einsatz unterschiedlicher Druckmedien
- Temperaturbereich -20 bis +150°C je nach Druckmedium und Dichtungstyp

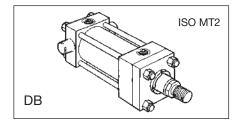


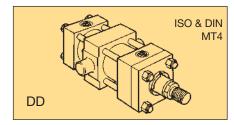


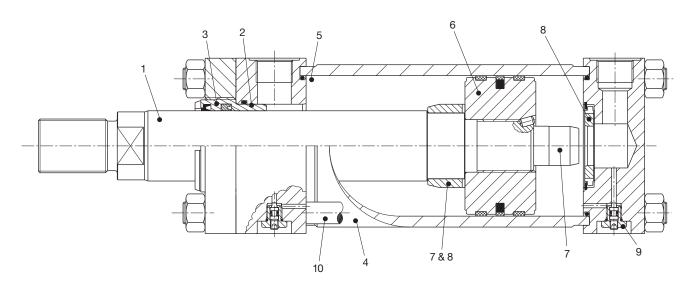




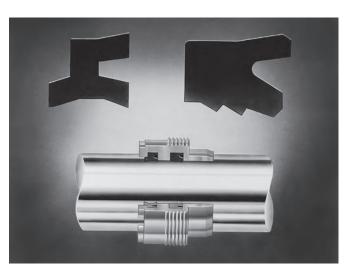








1 Kolbenstange


Die Kolbenstange besteht aus legiertem Kohlenstoffstahl, fein geschliffen und hartverchromt, auf max. 0,2 µm poliert. Vor der Verchromung wird auf min. C54 Rockwell induktionsgehärtet, wodurch eine schlagfeste Oberfläche entsteht, die höchste Lebensdauer von Dichtungen und Dichtungsbüchse ermöglicht.

2 Parker-Dichtungsbüchse

Das lange Führungsteil der Büchse liegt innerhalb der Dichtungen – dadurch bessere Schmierung und erhöhte Lebensdauer. Die Büchse mit eingebauten Stangenabdichtungen läßt sich ohne Demontage des Zylinders ausbauen – für schnelle und wirtschaftliche Wartungsarbeiten.

3 Stangendichtung

Die gerillte Lipseal-Dichtung hat eine Reihe von Dichtungskanten, die bei steigendem Druck nacheinander in Funktion treten und somit eine optimale Dichtwirkung unter allen Betriebsbedingungen gewährleisten. Beim Rückhub verhält sich die Dichtung wie ein Sperrventil, wodurch das an der Stange haftende Öl wieder in den Zylinder zurückfließen kann. Der doppellippige Abstreifer hat eine sekundäre Dichtfunktion und

fängt den überschüssigen Schmierölfilm im Raum zwischen Abstreifer und Lipseal Dichtung ein. Mit der äußeren Lippe wird verhindert, daß Schmutz in den Zylinder eindringen kann – Büchse und Dichtungen bleiben somit auf lange Zeit hin funktionstüchtig.

Lipseal Dichtungen sind standardmäßig aus verstärktem Polyurethan (PU) gefertigt, so daß sie eine wirkungsvolle Rückhaltung des Druckmediums sichern, wobei ihre Lebensdauer die der herkömmlichen Dichtstoffe um das Fünffache übersteigt. Die Standarddichtungen sind für Kolbengeschwindigkeiten bis 0,5 m/s ausgelegt – auf Wunsch sind Spezialdichtungen mit PTFE-Anteil für höhere Geschwindigkeitswerte erhältlich.

4 Zylinderrohr

Unsere Qualitätssicherung und Präzisionsfertigung erfüllen die strengsten Auflagen an die Zylinderrohre im Hinblick auf Geradheit, Rundheit und Oberflächengüte.

5 Zylinderrohr-Dichtungen

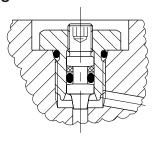
Zur absoluten Leckagefreiheit des Zylinderrohrs auch bei Druckstößen baut Parker vorgespannte Dichtungen ein.

6 Einteiliger Kolben

Tragringe vermeiden metallischen Kontakt mit dem Zylinderrohr auch bei Seitenkräften Eine lange Gewindeverbindung gewährleistet eine sichere Befestigung des Kolbens an der Kolbenstange. Für die zusätzliche Sicherung der Kolben dienen sowohl eine Verklebung im Gewinde als auch ein Sicherungsstift. Drei serienmäßige Dichtungskombinationen sind für verschiedenste Anwendungen lieferbar – siehe Abschnitt "Kolbendichtungen" auf der Seite gegenüber.

7 Endlagendämpfung

Die Endlagendämpfungen an Kopf bzw. Boden sind für eine optimale, gleichförmige Abbremsung gestuft ausgeführt – s. ausführliche Beschreibung auf Seite 20. Die Dämpfung am Zylinderkopf ist selbstzentrierend, der polierte Dämpfungszapfen am Boden ein in die Stange integriertes Teil.



8 Selbstzentrierender Dämpfungsring und Dämpfungsbüchse

Dämpfungsring und -büchse in Boden bzw. Kopf sind selbstzentrierend, wodurch enge Durchmessertoleranzen und eine bessere Dämpfungswirkung erzielt werden. Eine speziell konstruierte Dämpfungsbüchse mit Bohrungsdurchmessern von bis zu 100 mm dient als Rückschlagventil. Bei größeren Bohrungsdurchmessern wird ein herkömmliches Kugelventil verwendet. Durch die Verwendung eines Rückschlagventils im Kopf und das Anheben des Dämpfungsrings am Zylinderboden wird durch die volle Beaufschlagung des Kolbens ein schneller Anlauf aus den Endlagen ermöglicht. Damit ergeben sich kurze Taktzeiten.

9 Dämpfungseinstellung

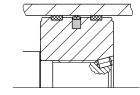
An beiden Enden des Zylinders sind Nadelventile zur präzisen Einstellung der Dämpfung vorgesehen. Durch eine Sicherung wird unabsichtliches Herausdrehen verhindert. Das unten abgebildete Cartridge Nadelventil wird in Zylindern mit Bohrungsgrößen bis 125 mm eingebaut – vgl. S. 24.

10 Konstruktion der Zugstange

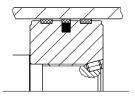
Die Konstruktion der Zugstangen übt durch die Vorspannung der Zugstangen an der Baugruppe eine Druckkraft auf das Zylinderrohr aus, die den vom Systemdruck erzeugten Zugkräften entgegenwirkt. Das Ergebnis ist ein ermüdungsfreier Zylinder mit einer hohen Lebensdauer und außergewöhnlich kompakten Abmessungen.

Sonderausführungen

Die Parker Mitarbeiter von Konstruktion und Technik sind gern bereit, Sonderausführungen nach Ihren Anforderungen auszuarbeiten. Wir möchten hier nur einige der möglichen Sonderausführungen nennen: alternative Abdichtungssysteme, spezielle Befestigungsarten, andere Kolben- und Stangendurchmesser.


Kolbendichtungen

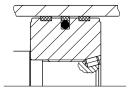
Um den zahlreichen Einsatzbedingungen Rechnung zu tragen, sind verschiedene Dichtungstypen lieferbar.


Standardkolbendichtungen eignen sich für Last-

haltefunktionen, da sie unter normalen Bedingungen einen

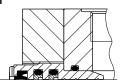
leckölfreien Kolbenbetrieb sichern. Standard-Kolbendichtungen sind serienmäßig in den Zylindern der Baureihen HMI und HMD eingebaut und eignen sich für Kolbengeschwindigkeiten von bis zu 0,5 m/s.

LoadMaster-Kolben verfügen über spezielle Hochleistungs-Tragringe, um den Seitenkräften entgegenzuwirken. Sie werden für Zylinder mit langem Hub empfohlen, besonders wenn diese gelenkig befestigt sind.



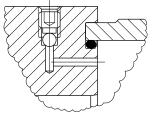
Servozylinder

Servozylinder gestatten präzisen Regelbetrieb im Hinblick auf Beschleunigung, Geschwindigkeit und Position des Zylinders in Anwendungen, die geringe Reibung und einen stick-slip-freien Betrieb erfordern. Der Einbau von internen bzw. externen Wegaufnehmern ist möglich. Servozylinder sind mit reibungsarmen Dichtungen am Kolben und in der Dichtungsbüchse ausgerüstet und besitzen speziell ausgewählte Zylinderrohre und Kolbenstangen.

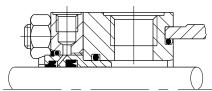

Reibungsarme Kolbendichtungen

Hier werden Dichtungen und Tragringe aus PTFE verwendet. Reibungsarme Kolben eignen sich für Anwendungen mit Kolbengeschwindigkeiten von bis zu 1 m/s. Sie eignen sich nicht für Lasthaltefunktionen.

Reibungsarme Stangendichtungen


Diese Stangendichtung setzt sich zusammen aus zwei reibungsarmen PTFE-Dichtringen und einem doppellippigen Abstreifer – vergleiche Seite 25.

Entlüftung


An den Enden des
Zylinders ist wahlweise eine
Entlüftungsschraube erhältlich.
Sie kann in jeder unbelegten
Position angeordnet werden. Bei
Zylindern der Bohrung 50 mm und
größer kann es erforderlich sein,
Entlüftung und Anschluss in einer

Position anzuordnen. In diesem Fall bitten wir um Rücksprache mit der Technik. Die Standard-Entlüftungsschraube ist im Zylinderkopf bzw. –Boden versenkt eingebaut (siehe Darstellung) und gegen versehentliches Herausdrehen gesichert. Zur gezielten Abführung des nachfolgenden Öls steht als Option eine überstehende Entlüftungsschraube (ATE-M8) mit einem Schlauchanschluss zur Verfügung.

Indikations- bzw. Leckölanschluss

Unter bestimmten Einsatzbedingungen wie z.B. bei Langhubzylindern, Zylindern mit konstantem Gegendruck (Differentialschaltung) oder bei Zylindern mit einem Verhältnis der Aus- zur Einfahrgeschwindigkeit von größer 2 zu 1, kann die sich zwischen den Dichtungen ansammelnde Hydraulikflüssigkeit über einen Leckölanschluss abgeführt werden. Bei Verwendung einer transparenten Leitung zum Tank kann der Anschluss auch zum frühzeitigen Erkennen von Dichtungsverschleiß verwendet werden.

Bei den meisten Befestigungsarten ist ein Anschluss der Größe G1/8 in der Halteplatte möglich. Ausnahmen hiervon bilden:

- Alle Befestigungsarten mit Halteplatte der Bohrungen 25 mm (Kolbenstange Nr. 1+2), 32 mm (Nr. 1) und 40 mm (Nr. 1) sowie die Befestigungsart D mit den Bohrungen 100 bis 200 mm. Hier ist der Anschluss jeweils im Zylinderkopf.
- Bei den Zylinderbohrungen 32 mm (Nr. 2) und 40 mm (Nr. 2) ist die Halteplatte zur Aufnahme des Leckölanschlusses verstärkt (F + 6 mm).
- Bei der Zylinderbohrung 63 mm (Nr. 2) ist die Halteplatte ebenfalls verstärkt (F + 4 mm).
- Alle Bohrungen der Befestigungsart JJ. Hier ist der Leckölanschluss generell im Zylinderkopf. Standardmäßig ist es nicht möglich, den Leckölanschluss auf die gleiche Seite wie den Zylinderanschluss zu setzen.

Hubverstellung

Bei engen Toleranzen beim Hub kann der Zylinder mit Hubverstellungen in verschiedenen Ausführungen ausgerüstet werden. Bitte machen Sie uns im Bedarfsfalle konkrete Angaben.

Kolbenstangenklemmeinheit

Diese Einheiten bewirken die sofortige Klemmung der Kolbenstange bei Druckabfall. Das Lösen erfolgt durch den Wiederaufbau des hydraulischen Druckes. Das Gerät kann für Sicherheitsvorrichtungen eingesetzt werden.

Schlüsselflächen am Kolbenstangenende

Um den Einbau des Zylinders in beengten Platzverhältnissen zu erleichtern, können anstelle von zwei Schlüsselflächen optional auch vier Anflächungen gewählt werden. Siehe Code 1, 2 oder 5 für Kolbenstangenende im Modellschlüssel auf Seite 29. Beachten Sie die Hinweise zu Druckeinschränkungen auf Seite 23.

Einfachwirkende Zylinder

Standardzylinder der Baureihen HMI und HMD sind zwar doppeltwirkend, aber auch für einfachwirkende Anwendungen geeignet. In diesem Fall bewirkt die Last bzw. eine Fremdkraft den Rückhub des Zylinders.

Einfachwirkende Zylinder mit Federrückzug

Bei der Verwendung von Zylindern der Baureihen HMI und HMD als einfachwirkende Zylinder ist der Einbau einer Feder zur Rückholung des Kolbens nach dem Arbeitshub möglich. Bitte geben Sie uns die Lastbedingungen und die Reibungsfaktoren an sowie die Wirkrichtung des Federrückzugs.

Bei Zylindern mit Federrückhub ist es sinnvoll, verlängerte Zugstangen vorzusehen, damit die Feder hierdurch bis zur vollständigen Entspannung abgestützt werden kann. Die Zugstangenmuttern sollten außerdem auf der gegenüberliegenden Seite des Zylinders angeschweißt werden, um die Sicherheit beim Ausbau des Zylinders zusätzlich zu erhöhen.

Mehrfachstellungszylinder

Für lineare Kraftübertragung mit kontrollierten Stops in Zwischenstellungen sind verschiedene Konstruktionen lieferbar. Um beispielsweise drei Hubstellungen zu erzielen, ist es üblich, zwei Standardzylinder der Befestigungsart HH mit einseitiger Kolbenstange gegeneinander zu montieren bzw. durchgehende Zugstangen zu verwenden. Durch Ein- und Ausfahren der Kolbenstangen der einzelnen Zylinder erreicht man somit drei Hubendstellungen. Eine andere Lösung ist ein Tandemzylinder mit separater Stange am Boden. Darüber hinaus offerieren wir auch ganz speziell auf Ihren Anwendungsfall bezogene Lösungen.

Faltenbalg

Kolbenstangenflächen, die mit an der Luft aushärtender Verschmutzung in Berührung kommen, sind besonders zu schützen. Für diese Fälle empfehlen wir daher einen Faltenbalg. Die Kolbenstange ist zu diesem Zweck um das Balgmaß zu verlängern.

Metallabstreifer

Falls die Kolbenstange haftendem Schmutzbefall ausgesetzt ist und daher vorzeitigen Verschleiß der Dichtungen verursacht, empfehlen wir den Einbau von Metallabstreifern anstelle des standardmäßig verwendeten Wiperseal Abstreifers. Maßänderungen treten nicht auf.

Näherungsschalter

Zylinder der Baureihe HMI/HMD können mit berührungslos arbeitenden Näherungsschaltern ausstattet werden.

Wegmesssystem

Zylinder der Baureihe HMI/HMD können mit verschiedenen linearen Wegaufnehmern ausgerüstet werden. Für weitere Informationen bitten wir um Rückfrage.

KRAUSE+KÄHLER

Befestigungsarten und Einsatzmöglichkeiten

Siehe auch anwendungsspezifische Befestigungsinformationen auf Seite 16.

Befestigung mit verlängerten Zugstangen – Typen TB, TC und TD Anwendung

- geradlinige Kraftübertragung
- Komprimierung (Schub) bodenseitige Befestigung vom Typ TC oder TD verwenden
- Spannung (Zug) kopfseitige Befestigung vom Typ TB oder TD verwenden Nutzen
- einfache Befestigung bei begrenztem Einbauraum
- hoher Wirkungsgrad die Kraft wird entlang der Zylinderachse absorbiert
- bei einer beidseitigen Befestigung (TD) können Halterungen und Schalter am Zylinder angebracht werden

Flanschbefestigungen – Typen HH und JJ Anwendung

- geradlinige Kraftübertragung
- Komprimierung (Schub) bodenseitige Befestigung vom Typ HH verwenden
- Spannung (Zug) kopfseitige Befestigung vom Typ JJ verwenden

Nutzen

- außerordentlich starre Befestigung aufgrund des großen Flanschbereichs
- hoher Wirkungsgrad die Kraft wird entlang der Zylinderachse absorbiert

Fußbefestigung - Typ C

Anwendung

- · geradlinige Kraftübertragung
- geeignet für Schub- und Zuganwendungen
- die Kraft wird nicht entlang der Zylinderachse absorbiert eine sichere Befestigung, z.B. über eine Passfeder (Seite 16) und eine effektive Führung der Last sind wesentlich

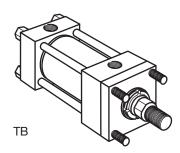
Nutzen

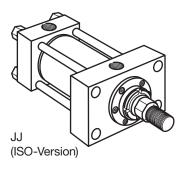
· einfache Befestigung und Einstellung

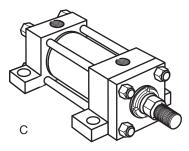
Befestigung mit Kuppelbolzen – Typen B, BB und SBd Anwendung

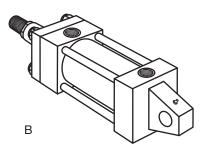
- Kraftübertragung entlang einer Kurve
- Bewegung in einer Ebene Typ B oder BB mit festem Gabelschuh verwenden
- Bewegung in mehr als einer Ebene Typ SBd mit sphärischem Gelenklager verwenden

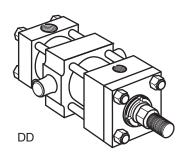
Nutzen

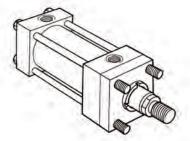

- einfache Anbringung mit Gleit- oder sphärischen Gelenklagern am Stangenende verwenden
- größere Flexibilität für den Maschinenkonstrukteur
- durch die Selbstausrichtung wird der Verschleiß der Lagerflächen des Zylinders vermindert

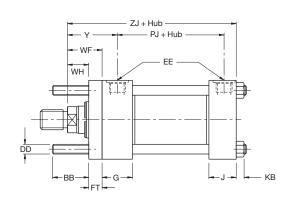

Schwenkzapfenbefestigung – Typen D, DB und DD Anwendung


- Kraftübertragung entlang einer Kurve
- Bewegung in einer Ebene
- Komprimierung (Schub) Befestigungen vom Typ DB oder DD verwenden
- Spannung (Zug) Befestigungen vom Typ D oder DD verwenden

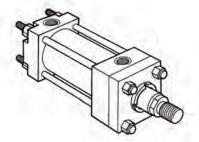

. Nutzen

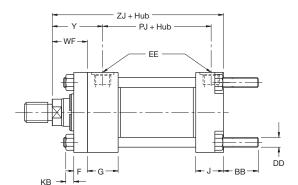

- größere Flexibilität für den Maschinenkonstrukteur
- durch die Selbstausrichtung wird der Verschleiß der Lagerflächen des Zylinders vermindert
- hoher Wirkungsgrad die Kraft wird entlang der Zylinderachse absorbiert
- einfache Anbringung bei Befestigung mit Kuppelbolzen am Stangenende verwenden

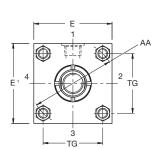


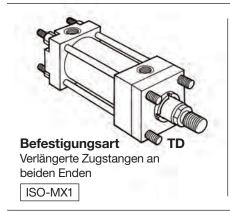


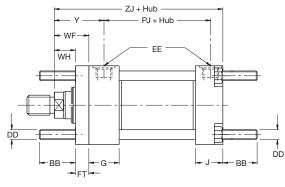


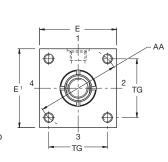

Zugstangenzylinder Baureihe HMI/HMD Befestigung mit verlängerten Zugstangen


Befestigungsart TB Verlängerte Zugstangen am Kopf ISO-MX3

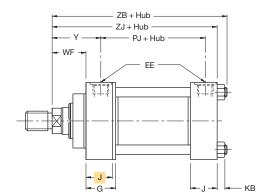




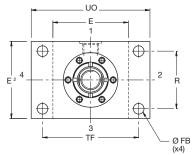


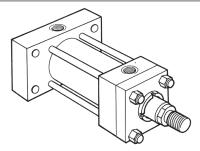

Befestigungsart TC Verlängerte Zugstangen am Boden ISO-MX2

¹ Bei Zylindern der Bohrung 25 und 32 mm erhöht sich das Kopfmaß E in der Anschlussposition um 5 mm.


Abmessungen – TB, TC, TD Vgl. Abmessungen und Anmerkungen, Seite 28 & Zylinderbefestigung, Seite 16

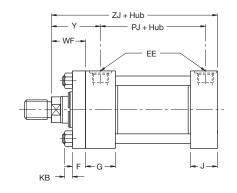
Bohrungs-	JS- AA B		20	_	EE	F				L/D	то.	\A/E	14/11	, , ,	+ H	lub
ø	AA	BB	DD	E	(BSPP)	max	FT	G	J	KB	TG	WF	WH	Y	PJ	ZJ
25	40	19	M5x0,8	40 ¹	G1/4	10	10	40	25	4	28,3	25	15	50	53	114
32	47	24	M6x1	45 ¹	G¹/ ₄	10	10	40	25	5	33,2	35	25	60	56	128
40	59	35	M8x1	64	G ³ / ₈	10	10	45	38	6,5	41,7	35	25	62	73	153
50	74	46	M12x1,25	76	G1/2	16	16	45	38	10	52,3	41	25	67	74	159
63	91	46	M12x1,25	90	G1/2	16	16	45	38	10	64,3	48	32	71	80	168
80	117	59	M16x1,5	115	G ³ / ₄	20	20	50	45	13	82,7	51	31	77	93	190
100	137	59	M16x1,5	130	G ³ / ₄	22	22	50	45	13	96,9	57	35	82	101	203
125	178	81	M22x1,5	165	G1	22	22	58	58	18	125,9	57	35	86	117	232
160	219	92	M27x2	205	G1	25	25	58	58	22	154,9	57	32	86	130	245
200	269	115	M30x2	245	G1 ¹ / ₄	25	25	76	76	24	190,2	57	32	98	165	299

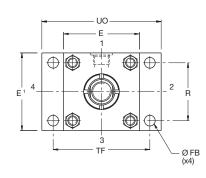


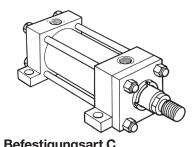

Befestigungsart JJ Kopfseitiger Rechteckflansch

ISO-ME5 DIN-ME5

Hinweis: Bei Zylindern der Bohrung 25 bis 40 mm sind Kopf und Haltering aus einem Teil.

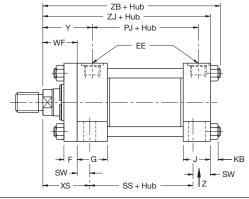


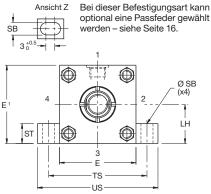



Befestigungsart HH

Bodenseitiger Rechteckflansch

ISO-ME6 DIN-ME6



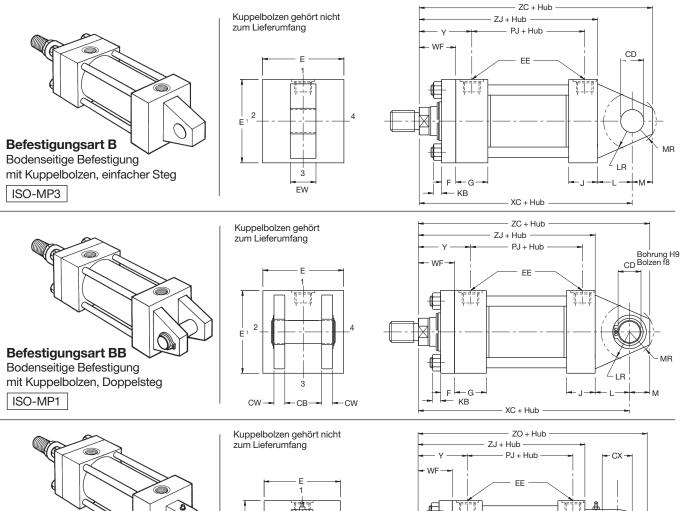


Befestigungsart C Fußbefestigung

ISO-MS2 DIN-MS2

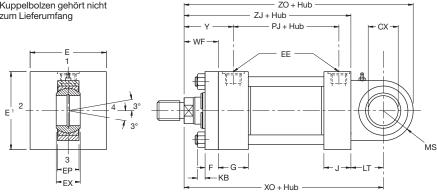
¹ Bei Zylindern der Bohrung 25 und 32 mm erhöht sich das Kopfmaß E in der Anschlussposition um 5 mm.

Abmessungen – JJ, HH, C Vgl. Abmessungen und Anmerkungen, Seite 28 & Zylinderbefestigung, Seite 16

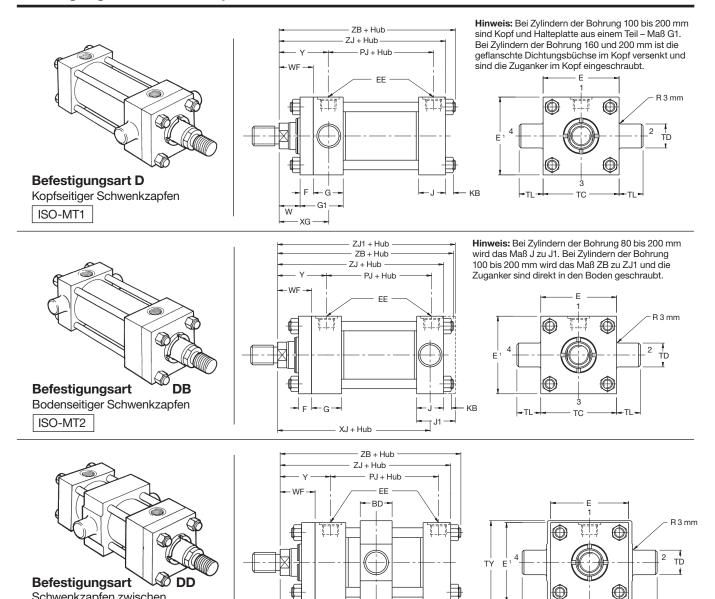

Dalammana			EE	_																		+ F	lub	
Bohrungs- Ø		E	(BSPP)	F max	FB	G	J	KB	LH h10	R	SB	ST	SW	TF	TS	UO	US	WF	XS	Y	PJ	ss	ZB max	ZJ
25		40 ¹	G1/4	10	5,5	40	25	4	19	27	6,6	8,5	8	51	54	65	72	25	33	50	53	72	121	114
32	ſ	45 ¹	G ¹ / ₄	10	6,6	40	25	5	22	33	9	12,5	10	58	63	70	84	35	45	60	56	72	137	128
40		64	G ³ / ₈	10	11	45	38	6,5	31	41	11	12,5	10	87	83	110	103	35	45	62	73	97	166	153
50		76	G1/2	16	14	45	38	10	37	52	14	19	13	105	102	130	127	41	54	67	74	91	176	159
63		90	G1/2	16	14	45	38	10	44	65	18	26	17	117	124	145	161	48	65	71	80	85	185	168
80		115	G ³ / ₄	20	18	50	45	13	57	83	18	26	17	149	149	180	186	51	68	77	93	104	212	190
100		130	G ³ / ₄	22	18	50	45	13	63	97	26	32	22	162	172	200	216	57	79	82	101	101	225	203
125		165	G1	22	22	58	58	18	82	126	26	32	22	208	210	250	254	57	79	86	117	130	260	232
160		205	G1	25	26	58	58	22	101	155	33	38	29	253	260	300	318	57	86	86	130	129	279	245
200	ſ	245	G1 ¹ / ₄	25	33	76	76	24	122	190	39	44	35	300	311	360	381	57	92	98	165	171	336	299


² Für die Befestigungsart JJ gilt: Bei Anschluss in Position 2 oder 4 ist die Erhöhung um 5 mm generell in Position 1.

KRAUSE+KÄHLER


Zugstangenzylinder Baureihe HMI/HMD

² Bei Zylindern der Bohrung 25 und 32 mm erhöht sich das Kopfmaß E in der Anschlussposition um 5 mm.


Abmessungen - B, BB, SBd Vgl. Maße und Anmerkungen, Seite 28 & Zylinderbefestigung, Seite 16

Bohrungs-	CB	CD				EE		EW		_									MS					+ 1	Hub		
Ø	A16	H9	CW	СХ	E	(BSPP)	EP	h14	EX	max	G	J	КВ	L	LR	LT	М	MR	max	WF	Υ	PJ	хс	хо	zc	ZJ	zo
25	12	10	6	12 -0,008	40 ²	G1/4	8	12	10	10	40	25	4	13	12	16	10	12	20	25	50	53	127	130	137	114	150
32	16	12	8	16 -0,008	45 ²	G1/4	11	16	14	10	40	25	5	19	17	20	12	15	22,5	35	60	56	147	148	159	128	170,5
40	20	14	10	20 -0,012	64	G ³ / ₈	13	20	16	10	45	38	6,5	19	17	25	14	16	29	35	62	73	172	178	186	153	207
50	30	20	15	25 -0,012	76	G1/2	17	30	20	16	45	38	10	32	29	31	20	25	33	41	67	74	191	190	211	159	223
63	30	20	15	30 -0,012	90	G1/2	19	30	22	16	45	38	10	32	29	38	20	25	40	48	71	80	200	206	220	168	246
80	40	28	20	40 -0,012	115	G ³ / ₄	23	40	28	20	50	45	13	39	34	48	28	34	50	51	77	93	229	238	257	190	288
100	50	36	25	50 -0,012	130	G ³ / ₄	30	50	35	22	50	45	13	54	50	58	36	44	62	57	82	101	257	261	293	203	323
125	60	45	30	60 -0,015	165	G1	38	60	44	22	58	58	18	57	53	72	45	53	80	57	86	117	289	304	334	232	384
160	70	56	35	80 -0,015	205	G1	47	70	55	25	58	58	22	63	59	92	59	59	100	57	86	130	308	337	367	245	437
200	80	70	40	100 -0,020	245	G1 ¹ / ₄	57	80	70	25	76	76	24	82	78	116	70	76	120	57	98	165	381	415	451	299	535

KRAUSE+KÄHLER

Zugstangenzylinder **Baureihe HMI/HMD**

¹ Bei Zylindern der Bohrung 25 und 32 mm erhöht sich das Kopfmaß E in der Anschlussposition um 5 mm.

DIN-MT4

Schwenkzapfen zwischen

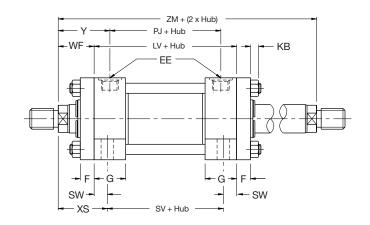
Kopf und Boden

ISO-MT4

Abmessungen - D, DB, DD Vgl. Abmessungen und Anmerkungen, Seite 28 & Zylinderbefestigung, Seite 16

	_					_				-					_				-							
Bohrungs-			Τ.	E	F							TD								+ Hub				Mindesthub	Min.	
Ø Ø	В	P	- 1	PP)	max	G	G1	J	J1	KB	TC	f8	TL	TM	TY	W	WF	XG	Υ	PJ	XJ	ZJ	ZJ1	ZB max	bei DD	Maß XI ²
25	20	40	1 G	i ¹ / ₄	10	40	-	25	-	4	38	12	10	48	45	-	25	44	50	53	101	114	-	121	10	78
32	2	5 45	1 G	i ¹ / ₄	10	40	-	25	-	5	44	16	12	55	54	-	35	54	60	56	115	128	-	137	10	90
40	30) 64	l G	3/8	10	45	-	38	-	6,5	63	20	16	76	76	-	35	57	62	73	134	153	-	166	15	97
50	40	76	G G	1/2	16	45	-	38	-	10	76	25	20	89	89	-	41	64	67	74	140	159	-	176	15	107
63	40	90) G	1/2	16	45	-	38	-	10	89	32	25	100	95	-	48	70	71	80	149	168	-	185	15	114
80	50) 11	5 G	3/4	20	50	-	45	50	13	114	40	32	127	127	-	51	76	77	93	168	190	194	212	20	127
100	6	13	0 G	3/4	22	50	72	45	58	13	127	50	40	140	140	35	57	71	82	101	187	203	216	225	20	138
125	73	3 16	5 G	3 1	22	58	80	58	71	18	165	63	50	178	178	35	57	75	86	117	209	232	245	260	25	153
160	9	20	5 G	ì1	25	58	88	58	88	22	203	80	63	215	216	32	57	75	86	130	230	245	275	279	30	161
200	11	0 24	5 G1	1 1/4	25	76	108	76	108	24	241	100	80	279	280	32	57	85	98	165	276	299	330	336	30	190

Alle Maße in mm, sofern nicht anders angegeben.



TM

² Maß X1 bei Bestellung bitte angeben.

(Befestigungsart C in Abbildung)

Bezeichnung

In der Bestellbezeichnung der ISO-Zylinder auf Seite 4 werden Zylinder mit beidseitiger Kolbenstange durch den Codezusatz "K" gekennzeichnet.

Zylinderbaureihe nach DIN

HMD-Zylinder mit beidseitiger Kolbenstange sind nur in den Befestigungsarten JJ, C und DD und mit Kolbenstangen mit den Nummern 1 und 2 erhältlich. Diese Zylinder entsprechen nicht DIN 24 554.

Abmessungen

Zur Ermittlung der Abmessungen von Zylindern mit beidseitiger Kolbenstange ist die gewünschte Befestigungsart unter Bezug auf die einseitigen Typen der Seiten 8 bis 11 auszuwählen. Die Abmessungen des entsprechenden Zylinders mit einseitiger Kolbenstange sollten dann durch die Angaben nebenstehender Tabelle ersetzt werden, um den vollständigen Maßsatz der beidseitigen Zylindertypen zu erhalten.

Kolbenstangenbelastbarkeit

Zylinder mit beidseitger Kolbenstange besitzen zwei separate Kolbenstangen, die ineinander verschraubt sind. Die höher belastbare Stange, auf der der Kolben sitzt, ist mit einem eingeschlagenen 'K' auf der Schlüsselfläche versehen. Die schwächere Kolbenstange sollte nur für Anwendungen mit leichterer Belastung eingesetzt werden. Die maximalen Nenndrücke beider Stangenenden sind unterschiedlich hoch, vgl. hierzu den Abschnitt "Druckeinschränkungen" auf Seite 23.

Mindesthublänge –

Kolbenstangenende Code 5 und 9 (nur HMI)

Bei Zylindern mit beidseitiger Kolbenstange und einem Hub von unter 80 mm sowie einer Bohrung von über 80 mm ist ein Kolbenstangenende mit Innengewinde (Code 5 oder 9) nur nach Rücksprache möglich.

Bohrungs-	Kolber	nstange
ø	Nr.	MM ø
05	1	12
25	2	18
32	1	14
32	2	22
40	1	18
40	2	28
	1	22
50	2	36
	3	28
	1	28
63	2	45
	3	36
	1	36
80	2	56
	3	45
	1	45
100	2	70
	3	56
	1	56
125	2	90
	3	70
	1	70
160	2	110
	3	90
	1	90
200	2	140
	3	110

	Plus Hub)	Plus 2 x Hub
LV	PJ	SV	ZM
104	53	88	154
108	56	88	178
125	73	105	195
125	74	99	207
127	80	93	223
144	93	110	246
151	101	107	265
175	117	131	289
188	188 130		302
242	160	172	356

Zubehör

Auswahl

Das Zubehör für die Kolbenstange wird passend zur Gewindeart des Kolbenstangenendes ausgewählt. Die Auswahl des Zubehörs für den Zylinderboden richtet sich dagegen nach der Bohrung des Zylinders.

Die Kuppelbolzen für die Zubehörteile am Zylinderboden und an der Kolbenstange haben den gleichen Durchmesser, wenn für das Kolbenstangenende Code 2 oder 7 gewählt wird.

Zubehör für Kolbenstange und Zylinderboden

Kolbenstange - Baureihe HMI

- Gabelkopf (1), Montageplatte (2) und Kuppelbolzen (3)
- Gelenkstück (4), Gabelschuh (5) und Kuppelbolzen (3)

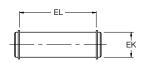
Kolbenstange - Baureihe HMI und HMD

- Gelenkstangenkopf mit sphärischem Gelenklager (6) und Gabel-Lagerbock mit Kuppelbolzen (7)

Zylinderboden - Baureihe HMI

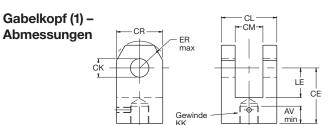
- Montageplatte für Befestigungsart BB (2)
- Gabelschuh für Befestigungsart B (5)
- Kuppelbolzen für Gabelschuh (3)

Zylinderboden - Baureihe HMI und HMD

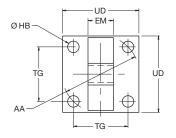

 Gabel-Lagerbock mit Kuppelbolzen (7) für Befestigungsart SBd

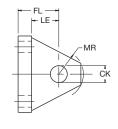
Gabelkopf, Montageplatte und Kuppelbolzen

Gewinde KK
M10x1,25
M12x1,25
M14x1,5
M16x1,5
M20x1,5
M27x2
M33x2
M42x2
M48x2
M64x3


,	5-1-			
Gabelkopf (1)	Montage- platte (2)	Kuppel- bolzen (3)	Belastbar- keit kN	Gewicht kg
143447	144808	143477	10,3	0,3
143448	144809	143478	16,9	0,6
143449	144810	143479	26,4	0,8
143450	144811	143480	41,2	2,2
143451	144812	143480	65,5	2,7
143452	144813	143481	106	5,9
143453	144814	143482	165	9,4
143454	144815	143483	258	17,8
143455	144816	143484	422	26,8
143456	144817	143485	660	39,0

Kuppelbolzen (3) - Abmessungen


Teile- Nr.	EK f8	EL min
143477	10	29
143478	12	37
143479	14	45
143480	20	66
143481	28	87
143482	36	107
143483	45	129
143484	56	149
143485	70	169


Zugstangenzylinder **Baureihe HMI/HMD**

Teile- Nr.	AV	CE	СК н9	CL	CM A16	CR	ER	KK	LE min	Gewicht kg
143447	14	32	10	25	12	20	12	M10x1,25	13	0,08
143448	16	36	12	32	16	32	17	M12x1,25	19	0,25
143449	18	38	14	40	20	30	17	M14x1,5	19	0,32
143450	22	54	20	60	30	50	29	M16x1,5	32	1,0
143451	28	60	20	60	30	50	29	M20x1,5	32	1,1
143452	36	75	28	83	40	60	34	M27x2	39	2,3
143453	45	99	36	103	50	80	50	M33x2	54	2,6
143454	56	113	45	123	60	102	53	M42x2	57	5,5
143455	63	126	56	143	70	112	59	M48x2	63	7,6
143456	85	168	70	163	80	146	78	M64x3	83	13,0

Montageplatte (2) - Abmessungen

HB

5,5

6,6

9,0

13,5

13,5

17,5

17,5

TG

28,3

33,2

41,7

52,3

64,3

82,7

96,9

125,9

154,9

190,2

UD

40

45

65

75

90

115

130

165

205

240

Teile- Nr.	СК н9	EM h13	FL	MR max	LE min	AA
144808	10	12	23	12	13	40
144809	12	16	29	17	19	47
144810	14	20	29	17	19	59
144811	20	30	48	29	32	74
144812	20	30	48	29	32	91
144813	28	40	59	34	39	117
144814	36	50	79	50	54	137
144815	45	60	87	53	57	178
144816	56	70	103	59	63	219
144817	70	80	132	78	82	269

Montageplatte (2)

Bohrungs- Ø
25
32
40
50
63
80
100
125
160
200

	Montageplatte	Belastbarkeit kN	Gewicht kg
1	144808	10,3	0,2
1	144809	16,9	0,3
]	144810	26,4	0,4
]	144811	41,2	1,0
]	144812	65,5	1,4
1	144813	106	3,2
]	144814	165	5,6
]	144815	258	10,5
	144816	422	15,0
	144817	660	20,0

Alle Maße in mm, sofern nicht anders angegeben.

Gewicht

kg

0,02

0,05

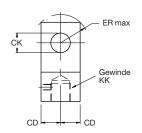
0,08

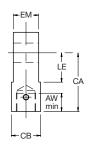
0,2

0,4

1,0

1,8

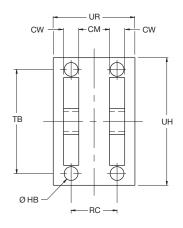

6,0

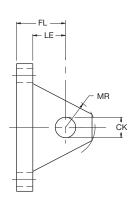

Gelenkstück, Gabelschuh und Kuppelbolzen

Gewinde KK
M10x1,25
M12x1,25
M14x1,5
M16x1,5
M20x1,5
M27x2
M33x2
M42x2
M48x2
M64x3

Gelenk- stück (4)	Gabel- schuh (5)	Kuppel- bolzen (3)	Belastbar- keit kN	Gewicht kg
143457	143646	143477	10,3	0,5
143458	143647	143478	16,9	1,0
143459	143648	143479	26,4	1,3
143460	143649	143480	41,2	3,2
143461	143649	143480	65,5	3,8
143462	143650	143481	106	6,9
143463	143651	143482	165	12,5
143464	143652	143483	258	26,0
143465	143653	143484	422	47,0
143466	143654	143485	660	64,0

Gelenkstück




Gelenkstück (4) - Abmessungen

Teile- Nr.
143457
143458
143459
143460
143461
143462
143463
143464
143465
143466

AW	CA	СВ	CD	CK H9	EM h13	ER	кк	LE min	Gewicht kg
14	32	18	9	10	12	12	M10x1,25	13	0,08
16	36	22	11	12	16	17	M12x1,25	19	0,15
18	38	20	12,5	14	20	17	M14x1,5	19	0,22
22	54	30	17,5	20	30	29	M16x1,5	32	0,5
28	60	30	20	20	30	29	M20x1,5	32	1,1
36	75	40	25	28	40	34	M27x2	39	1,5
45	99	50	35	36	50	50	M33x2	54	2,5
56	113	65	50	45	60	53	M42x2	57	4,2
63	126	90	56	56	70	59	M48x2	63	11,8
85	168	110	70	70	80	78	M64x3	83	17,0

Gabelschuh

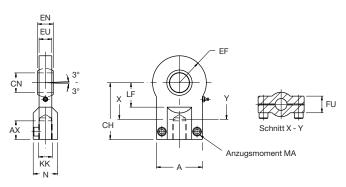
Gabelschuh (5) - Abmessungen

Teile- Nr.
143646
143647
143648
143649
143650
143651
143652
143653
143654

CK H9	CM A16	cw	FL	MR max	нв	LE min	RC	тв	UR min	UH
10	12	6	23	12	5,5	13	18	47	35	60
12	16	8	29	17	6,6	19	24	57	45	70
14	20	10	29	17	9	19	30	68	55	85
20	30	15	48	29	13,5	32	45	102	80	125
28	40	20	59	34	17,5	39	60	135	100	170
36	50	25	79	50	17,5	54	75	167	130	200
45	60	30	87	53	26	57	90	183	150	230
56	70	35	103	59	30	63	105	242	180	300
70	80	40	132	78	33	82	120	300	200	360

Gabelschuh (5)

Bohrungs- Ø
25
32
40
50
63
80
100
125
160
200


ıgs-	Gabelschuh	Belastbarkeit kN	Gewicht kg
	143646	10,3	0,4
	143647	16,9	0,8
	143648	26,4	1,0
	143649	41,2	2,5
	143649	65,5	2,5
	143650	106	5,0
	143651	165	9,0
	143652	258	20,0
	143653	422	31,0
	143654	660	41,0

Gelenkstangenkopf, Gabel-Lagerbock mit Kuppelbolzen

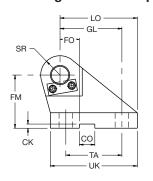
Gewinde KK
M10x1,25
M12x1,25
M14x1,5
M16x1,5
M20x1,5
M27x2
M33x2
M42x2
M48x2
M64x3

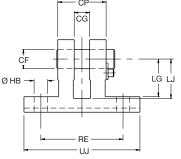
Gelenkstangenkopf mit sphärischem Gelenklager (6)	Gabel- Lagerbock mit Kuppelbolzen (7)	Belast- barkeit kN	Gewicht kg
145254	145530	10,3	0,8
145255	145531	16,9	1,6
145256	145532	26,4	2,5
145257	145533	41,2	3,9
145258	145534	65,5	7,8
145259	145535	106	14,3
145260	145536	165	28
145261	145537	258	46
145262	145538	422	95
145263	145539	660	168

Gelenkstangenkopf nach DIN 24 555

Gelenkstangenkopf (6) - Abmessungen

Teile- Nr.
145254
145255
145256
145257
145258
145259
145260
145261
145262
145263


5	1- (-)			J									
A max	AX min	EF max	СН	CN	EN	EU	FU	KK	LF min	N max	MA max Nm	Р	Gewicht kg
40	15	20	42	12 -0,008	10 -0,12	8	13	M10x1,25	16	17	10	M6	0,2
45	17	22,5	48	16 -0,008	14 -0,12	11	13	M12x1,25	20	21	10	M6	0,3
55	19	27,5	58	20 -0,012	16 -0,12	13	17	M14x1,5	25	25	25	M8	0,4
62	23	32,5	68	25 -0,012	20 -0,12	17	17	M16x1,5	30	30	25	M8	0,7
80	29	40	85	30 -0,012	22 -0,12	19	19	M20x1,5	35	36	45	M10	1,3
90	37	50	105	40 -0,012	28 -0,12	23	23	M27x2	45	45	45	M10	2,3
105	46	62,5	130	50 -0,012	35 -0,12	30	30	M33x2	58	55	80	M12	5
134	57	80	150	60 -0,015	44 -0,15	38	38	M42x2	68	68	160	M16	9
156	64	102,5	185	80 -0,015	55 -0,15	47	47	M48x2	92	90	310	M20	16
190	86	120	240	100 -0,020	70 -0,20	57	57	M64x3	116	110	530	M24	28


Gabel-Lagerbock mit Kuppelbolzen (7) – Abmessungen

Teile- Nr.
145530
145531
145532
145533
145534
145535
145536
145537
145538
145539

CF K7/h6	CG +0,1, +0,3	CO N9	СР	FM js11	FO js14	GL js13	НВ	KC 0, +0,30	LG	LJ	LO	RE js13	SR max	TA js13	UJ	UK
12	10	10	30	40	16	46	9	3,3	28	29	56	55	12	40	75	60
16	14	16	40	50	18	61	11	4,3	37	38	74	70	16	55	95	80
20	16	16	50	55	20	64	14	4,3	39	40	80	85	20	58	120	90
25	20	25	60	65	22	78	16	5,4	48	49	98	100	25	70	140	110
30	22	25	70	85	24	97	18	5,4	62	63	120	115	30	90	160	135
40	28	36	80	100	24	123	22	8,4	72	73	148	135	40	120	190	170
50	35	36	100	125	35	155	30	8,4	90	92	190	170	50	145	240	215
60	44	50	120	150	35	187	39	11,4	108	110	225	200	60	185	270	260
80	55	50	160	190	35	255	45	11,4	140	142	295	240	80	260	320	340
100	70	63	200	210	35	285	48	12,4	150	152	335	300	100	300	400	400

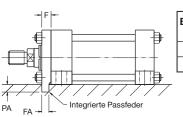
Gabel-Lagerbock mit Kuppelbolzen nach DIN 24 556 (7) Gabel-Lagerbock mit Kuppelbolzen (7)

Bohrungs- Ø
25
32
40
50
63
80
100
125
160
200

Gabel-Lagerbock mit Kuppelbolzen	Belastbarkeit kN	Gewicht kg
145530	10,3	0,6
145531	16,9	1,3
145532	26,4	2,1
145533	41,2	3,2
145534	65,5	6,5
145535	106	12
145536	165	23
145537	258	37
145538	422	79
145539	660	140

Flansch

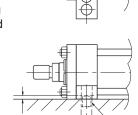
Die Befestigungsart JJ ist zur sorgfältigen Ausrichtung auf der Einbaufläche mit einer Zentrierung versehen – vgl. Seite 9. Bei Zylindern der Bohrung 25 bis 40 mm sind Kopf und Haltering aus einem Teil; ab Bohrung 50 mm ist der Haltering an den Kopf geflanscht.


Verlängerte Zugstangen

Unabhängig von der gewünschten Befestigungsart können die Zylinder ebenfalls mit verlängerten Zugstangen ausgerüstet werden. Hieran lassen sich andere Systeme oder Maschinenteile befestigen. Ein zusätzlicher Befestigungsmutternsatz ist im Lieferumfang enthalten.

Fußbefestigung und Passfeder

Dem Moment, welches aufgrund der Lasteinleitung auf die Fußbefestigung wirkt, muss durch eine stabile Befestigung des Zylinders und einer wirksamen Führung der Last entgegengewirkt werden. Die Option einer Passfeder zur sicheren Fixierung des Zylinders wird daher empfohlen.


Bei den Zylinderbohrungen 25 und 32 mm (Befestigungsart C) kann die Passfeder als Verlängerung der Halteplatte ausgeführt werden. Wählen Sie hierzu den Code P für Ergänzung im Modellschlüssel auf Seite 29.

	Bohrungs Ø
	25
	32
_ `	

F nom,	FA -0,075	PA -0,2
10	8	5
10	8	5

Für Zylinderbohrungen ab 40 mm (Befestigungsart C) kann eine separate Passfeder (im Lieferumfang enthalten) zwischen Zylinderkopf und Montagefläche eingesetzt werden. Wählen Sie hierzu den Code K für Ergänzung im Modellschlüssel auf Seite 29. Die im Lieferumfang enthaltene Passfeder entspricht BS4235 bzw DIN6885 Typ B.

CO

Dassforder

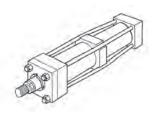
Bohrungs- Ø	CO N9	KC min	TP min	
40	12	4	55	
50	12	4,5	70	
63	16	4,5	80	
80	16	5	105	
100	16	6	120	
125	20	6	155	
160	32*	8	190	
200	40	8	220	

	rassieuei								
	Breite	Höhe	Länge	Artikelnr.					
	12	8	55	0941540040					
	12	8	70	0941540050					
	16	10	80	0941540063					
	16	10	105	0941540080					
	16	10	120	0941540100					
	20	12	155	0941540125					
	32	18	190	0941540160					
Ī	40	22	220	0941540200					

^{*} Nicht nach ISO 6020/2

Zugstangenmuttern

Zugstangenmuttern, mit geschmierten Gewinden, sollten eine Mindestfestigkeit nach ISO 898/2, Klasse 10, haben und entsprechend den gezeigten Zahlen drehmomentbelastet werden.


Befestigungsschrauben

Für die Befestigung des Zylinders an Maschine oder Sockel sollten Befestigungsschrauben mit einer Mindestfestigkeit nach ISO 898/1, Klasse 10.9 verwendet werden. Die Befestigungsschrauben müssen entsprechend der vom Hersteller vorgegebenen Zahlen drehmomentbelastet werden.

Bohrungs- Ø	Anzugs- moment für Zugstangen- mutter Nm
25	4,5 - 5,0
32	7,6 - 9,0
40	19,0 - 20,5
50	68 - 71
63	68 - 71
80	160 - 165
100	160 - 165
125	450 - 455
160	815 - 830
200	1140 - 1155

Zugstangenstützen

Hierdurch wird die Knickgefahr bei Langhubzylindern reduziert. Die Stützen veranlassen eine radial auslaufende Bewegung der Zugstangen, sodaß ohne Einbau einer zusätzlichen Abstützung längere Hubwege als normal möglich werden.

Bohrungs-	Hub (Meter)												
Ø	0,9	1,2	1,5	1,8	2,1	2,4	2,7	3,0	3,3	3,6	3,9	4,2	
25	1	1	2										
32	-	1	1	2			В	itte r	ückt	frage	en		Anzahl
40	-	-	1	1	1	2	2						erforderl. Stützen
50	-	-	-	1	1	1	1	2	2	2	2	3	Stutzen
63	-	-	-	-	-	1	1	1	1	1	2	2	
80	-	-	-	-	-	-	-	1	1	1	1	1	
100	-	-	-	-	-	-	-	_	-	1	1	1	

Maximale Hublänge ohne Abstützung

Bohrungs- Ø					
25					
32					
40					
50					
63					
80					
100					
125					
160					
200					

Stützlager	Zusätzliche Abstützung
1500	1000
2000	1500
3000	2000
3500	2500

Hydraulikkompetenz.de

Theoretische Schub- und Zugkräfte

Hubtoleranzen

Die Hubstandardtoleranzen bei der Produktion betragen 0 bis +2 mm für alle Bohrungsdurchmesser und Hublängen. Bei engeren Toleranzen geben Sie bitte die erforderlichen Toleranzen sowie die Betriebstemperatur und den Betriebsdruck an. In der folgenden Tabelle werden die Toleranzen der hubabhängigen Abmessungen für die einzelnen Befestigungsarten angezeigt.

Befestigungsart	Мав	Toleranzen für Hublängen bis 3 m
Alle Befestigungsarten	Υ	±2
- Anschlussmaß	PJ	±1,25
JJ (ME5)	ZB	max
HH (ME6)	ZJ	±1
BB (MP1)	XC	.1.05
B (MP3)	λ	±1,25
SBd (MP5)	XO	±1,25
	XS	±2
C (MS2)	ZB	max
	SS	±1,25
D (MT4)	XG	±2
D (MT1)	ZB	max
DD (MTO)	XJ	±1,25
DB (MT2)	ZB	max
DD (MT4)	X1	±2
DD (MT4)	ZB	max
TD (MX1)		_
TC (MX2)	BB	+3 0
TB (MX3)		
TB (MX3)	ZB	max
TD (MX1)	\A/I	.0
TB (MX3)	WH	±2
TD (MX1)		
TC (MX2)	ZJ	±1
TB (MX3)		

inPHorm

Umfassendere Informationen zur Berechnung des erforderlichen Zylinders können Sie dem Auswahlprogramm inPHorm für Zylinder (HY07-1260/Eur) entnehmen.

Berechnung des Zylinderdurchmessers

Komprimierung oder 'Schub'-Anwendungen

Tabelle 'Schubkraft' benutzen, wenn der Zylinder auf Schubbeansprucht wird.

- Den zum Betriebsdruck n\u00e4chsth\u00f6heren Druck aus der Tabelle ausw\u00e4hlen.
- 2. In der gleichen Spalte die erforderliche Kraft für die zu bewegende Masse ermitteln (durch Rundung).
- In der gleichen Zeile dann die erforderliche Zylinderbohrung ablesen.

Sollten die Zylinderabmessungen den für die Anwendung verfügbaren Einbauplatz übersteigen, die Berechnung ggf. mit erhöhtem Betriebsdruck wiederholen.

Schubkraft

Bohrungs- Ø	Kolben- fläche Zylinder
mm	mm²
25	491
32	804
40	1257
50	1964
63	3118
80	5027
100	7855
125	12272
160	20106
200	31416

	Schubkraft Zylinder in kN							
10 bar	40 bar	63 bar	100 bar	125 bar	160 bar	210 bar		
0,5	2,0	3,1	4,9	6,1	7,9	10,3		
0,8	3,2	5,1	8,0	10,1	12,9	16,9		
1,3	5,0	7,9	12,6	15,7	20,1	26,4		
2,0	7,9	12,4	19,6	24,6	31,4	41,2		
3,1	12,5	19,6	31,2	39,0	49,9	65,5		
5,0	20,1	31,7	50,3	62,8	80,4	105,6		
7,9	31,4	49,5	78,6	98,2	125,7	165,0		
12,3	49,1	77,3	122,7	153,4	196,4	257,7		
20,1	80,4	126,7	201,1	251,3	321,7	422,2		
31,4	125,7	197,9	314,2	392,7	502,7	659,7		

Spannung oder 'Zug'-Anwendungen

Tabelle 'Abzuziehende Werte bei Zugkraft' benutzen, wenn der Zylinder auf Zug beansprucht wird. Bestimmung der Zugkraft:

- Das oben angegebene Verfahren für Anwendungen bei Schubkraft anwenden.
- Anhand der 'Zugkrafttabelle' die der Kolbenstange und dem Druck entsprechende Kraft ermitteln.
- 3. Diesen Wert von dem aus der 'Schubtabelle' ermittelten Wert abziehen, so daß der resultierende Betrag die Ist-Kraft für die zu bewegende Last darstellt.

Sollte diese Kraft nicht ausreichend sein, die Berechnung ggf. bei größerem Systemdruck und Zylinderdurchmesser wiederholen.

Abzuziehende Werte bei Zugkraft

Kolben- stangen- fläche
mm²
113
154
255
380
616
1018
1591
2463
3849
6363
9505
15396

	Kraftreduzierung durch Kolbenstangenfläche in kN							
10 bar	40 bar	63 bar	100 bar	125 bar	160 bar	210 bar		
0,1	0,5	0,7	1,1	1,4	1,8	2,4		
0,2	0,6	1,0	1,5	1,9	2,5	3,2		
0,3	1,0	1,6	2,6	3,2	4,1	5,4		
0,4	1,5	2,4	3,8	4,8	6,1	8,0		
0,6	2,5	3,9	6,2	7,7	9,9	12,9		
1,0	4,1	6,4	10,2	12,7	16,3	21,4		
1,6	6,4	10,0	15,9	19,9	25,5	33,4		
2,5	9,9	15,6	24,6	30,8	39,4	51,7		
3,8	15,4	24,2	38,5	48,1	61,6	80,8		
6,4	25,5	40, 1	63,6	79,6	101,8	133,6		
9,5	38,0	59,9	95,1	118,8	152,1	199,6		
15,4	61,6	97,0	154,0	192,5	246,3	323,3		

Ermittlung der Kolbenstangengröße

Die Auswahl der richtigen Kolbenstange für Schubbelastung wird wie folgt vorgenommen:

- Befestigungsart und Verbindungsart des Stangenendes festlegen. Den der Anwendung entsprechenden Hubfaktor anhand der Tabelle unten.
- 2. Unter Berücksichtigung des Hubfaktors die sog. 'Grundlänge' aus folgender Formel bestimmen:

Grundlänge = Ist-Hub x Hubfaktor

(Das Diagramm gilt für Standard-Stangenenden, gemessen von der äußeren Planfläche des Zylinderflansches. Bei Stangenenden über Standardlänge ist die Mehrlänge zum Hub zu addieren, um die Grundlänge zu erhalten).

 Ermittlung der Last für die Schubanwendung durch Multiplikation der vollen Kolbenfläche des Zylinders mit dem Systemdruck bzw. durch die Schub- und Zugkraft-Tabellen auf Seite 17. 4. Schauen Sie in dem umseitigen Diagramm zur Ermittlung der Kolbenstangengröße entlang der Werte für 'Grundlänge' und 'Schubkraft', die Sie unter 2 und 3 ermittelt haben, und notieren Sie den Schnittpunkt der beiden Graphen.

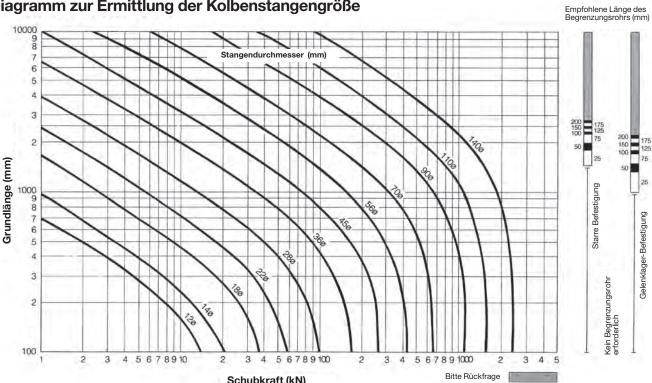
Den richtigen Durchmesser der Kolbenstange können Sie an der Kurve über dem Schnittpunkt ablesen.

Bei Zugbelastungen wählen Sie die Kolbenstangengröße aus, indem Sie Standardzylinder mit Kolbenstangen-Standarddurchmessern spezifizieren, und diese bei oder unter dem Nenndruck anwenden.

inPHorm

Für die genaue Dimensionierung des Zylinders empfehlen wir die Verwendung der Berechnungssoftware inPhorm HY07-1260/EUR.

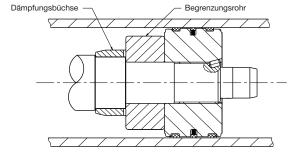
Hubfaktoren


Anschluss am Stangenende	Befestigungsart	Befestigungsart	Hubfaktor
Fest und starr geführt	TB, TD, JJ, C		0.5
Drehbar und starr geführt	TB, TD, JJ, C		0.7
Fest und starr geführt	TC, HH		1.0
Drehbar und starr geführt	D		1.0
Drehbar und starr geführt	TC, HH, DD		1.5
Abgestützt, aber nicht starr geführt	TB, TD, JJ, C		2.0
Drehbar und starr geführt	BB, DB, SBd		2.0
Abgestützt, aber nicht starr geführt	TC, HH		4.0
Abgestützt, aber nicht starr geführt	BB, DB, SBd		4.0

KRAUSE+KÄHLER

Diagramm zur Ermittlung der Kolbenstangengröße

Schubkraft (kN)


Begrenzungsrohre

Bei Langhub-Zylindern für Schubbelastung ist zur Verringerung der Lagerbelastungen der Einbau von Begrenzungsrohren zu erwägen. Die erforderliche Länge des Begrenzungsrohrs wird in Höhe des Schnittpunktes an der rechten Diagrammseite abgelesen. Je nach starrer oder gelenkiger Befestigung sind die Anforderungen an das Begrenzungsrohr verschieden.

Fällt die erforderliche Länge des Begrenzungsrohrs in den Bereich 'Bitte Rückfrage', bitten wir um Angabe folgender Daten:

- 1. Befestigungsart des Zylinders
- 2. Verbindung zum Stangenende und Art der Lastführung
- 3. Zylinderbohrung, Hub und Länge des Stangenendes (Maß WF - VE), sofern größer als Standard.
- 4. Einbaulage des Zylinders (bei angewinkelter oder vertikaler Lage bitte Bewegungsrichtung der Kolbenstange angeben).
- 5. Betriebsdruck des Zylinders, sofern dieser unter dem Nenndruck liegt.

Wird ein Zylinder mit einem Begrenzungsrohr spezifiert, so fügen Sie bitte ein S (Spezial) sowie den Arbeitshub des Zylinders in den Modellschlüssel ein. Die Länge des Begrenzungsrohrs geben Sie bitte im Klartext an.

Was bedeutet Endlagendämpfung?

Mit der Endlagendämpfung wird die bewegte Masse kontrolliert abgebremst. Sie empfiehlt sich, wenn der volle Hub mit einer Kolbengeschwindigkeit über 0,1 m/s gefahren wird. Außerdem steigert die Endlagendämpfung die Lebensdauer der Zylinder und verringert Betriebsgeräusch sowie Druckstöße.

Dämpfung ist sowohl kopf- als auch bodenseitig möglich, ohne die Abmessungen und Einbaumaße des Zylinders zu verändern.

Standard-Dämpfung

Wo angegeben, verwenden HMI- und HMD-Zylinder profilierte Endlagendämpfungen, die eine effiziente, progressive Verlangsamung ermöglichen. Die abschließende Geschwindigkeit kann über die Dämpfungsschrauben eingestellt werden. Der Dämpfungswirkung der kopf- und bodenseitigen Endlagendämpfung für die einzelnen Bohrungsdurchmesser wird in den Diagrammen auf Seite 21 dargestellt.

Beachten Sie, dass die Dämpfungsleistung durch die Verwendung von Wasser oder wasserbasierten Druckmedien mit hohem Wassergehalt beeinflusst wird. Wenden Sie sich für weitere Informationen an das Werk.

Alternative Dämpfungen

Je nach Einsatzfall können wir Ihnen auch eine speziell zugeschnittene Dämpfung anbieten.

Dämpfungslänge

Die Endlagendämpfung aller HMI/HMD-Zylinder weist längstmögliche Dämpfungsbüchsen und -zapfen im Rahmen der Normzylinderabmessungen auf, ohne die Kolbenund Stangen-führungslängen zu reduzieren, s. Tabelle Dämpfungslängen Seite 22. Das Dämpfungsverhalten ist über Nadelventile einstellbar.

Dämpfungsberechnung

Die Diagramme auf Seite 21 zeigen das Energieabsorptionsvermögen der einzelnen Bohrungs-/Stangenkombinationen am Kopf (Ring) und am Boden (volle Bohrung). Die Diagramme gelten für Kolbengeschwindigkeiten im Bereich 0,1 bis 0,3 m/s. Im Bereich 0,3 bis 0,5 m/s sind die Energiewerte um 25% zu vermindern. Bei Geschwindigkeiten unter 0,1 m/s mit hohen Bremsmassen und bei solchen über 0,5 m/s sind ggf. spezielle Dämpfungsprofile erforderlich.

Das Kopfende hat ein geringeres Dämpfungsvermögen als der Zylinderboden. Durch Druckverstärkung am Kolben fällt dieses Dämpfungsvermögen bei hohen Arbeitsdrücken bis auf Null.

Die Fähigkeit zur Energieaufnahme nimmt bei steigendem Verfahrdruck ab, der im normalen Hydraulikkreis dem Einstellwert des Druckbegrenzungsventils entspricht.

inPHorm

Die Dämpfungsanforderungen lassen sich mit Hilfe des Auswahlprogramms inPHorm für Zylinder (HY07-1260/Eur) automatisch für einzelne Zylinder-/Lastkombinationen berechnen.

Formeln

Für Berechnung bei horizontalen Anwendungen gilt die Formel: $E = \frac{1}{2}$ mv². Ist die Zylinderachse gegenüber der Horizontalen geneigt, dann gilt:

 $E = \frac{1}{2} \text{ mv}^2 + \text{mgl x } 10^{-3} \text{ x sin}\alpha$ (abwärts bewegte Masse)

 $E = \frac{1}{2} \text{ mv}^2 - \text{mgl x } 10^{-3} \text{ x sin}\alpha$ (aufwärts bewegte Masse)

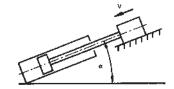
wobei,

E = aufgenommene Energie in Joule g = Erdbeschleunigung = 9,81 m/s²

v = Geschwindigkeit in m/s

I = Dämpfungslänge in mm (s. Seite 22)

m = Masse in kg (einschließlich Kolben- und Stangenmasse mit Zubehör, s. Seiten 13-15 und 22)


a = Neigungswinkel zur Horizontalen in $^{\circ}$ (-90 $^{\circ}$ \leq a \leq +90 $^{\circ}$)

p = Druck in bar

Beispiel

Im folgenden Beispiel wird gezeigt, wie man die von linear bewegten Massen erzeugte Energie berechnet. Im Beispiel

wird vorausgesetzt, daß die ausgewählten Bohrungs- und Stangendurchmesser der Anwendung entsprechen. Die Reibung auf Zylinder und Masse wird vernachlässigt.

Ausgewählte Bohrung/Stange = 160/70 mm (Stange Nr. 1) – Dämpfung bodenseitig

 Druck =
 160 bar

 Masse =
 10 000 kg

 Geschwindigkeit =
 0,4 m/s

Dämpfungslänge = 41 mm - vgl. S. 22

 $\alpha = 45^{\circ}$ $\sin \alpha = 0,7$

 $E = \frac{1}{2}mv^2 + mgl \times 10^{-3} \times sin\alpha$

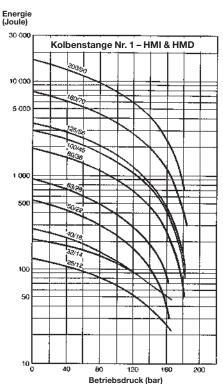
 $E = ((10\ 000\ x\ 0,4^2)\ /\ 2 + (10\ 000\ x\ 9,81\ x\ 41\ x\ 10^{-3}\ x\ 0,7)$ Joule

E = 800 + 2815 = 3615 Joule

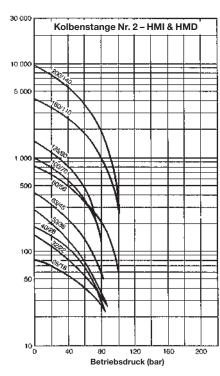
Da die Geschwindigkeit 0,3 m/s übersteigt, muß diese Energie noch entsprechend gewichtet werden. Um mit demselben Diagramm arbeiten zu können, ergibt sich als Energiebasis:

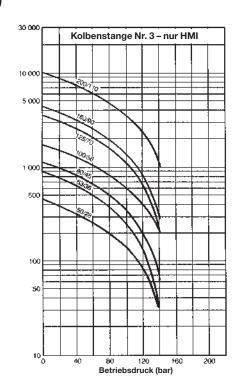
3615/0,75 = 4820 Joule

Das entsprechende Diagramm zeigt, daß die Dämpfung die Masse sicher abbremsen kann. Falls die errechnete Energie aber über der 160/70-Kurve liegen würde, wäre eine größere Zylinderbohrung auszuwählen und die Berechnung zu wiederholen.

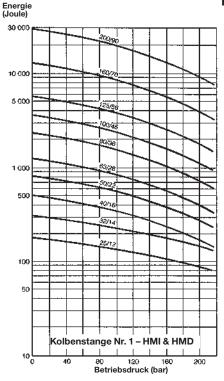

Baureihe HMI/HMD

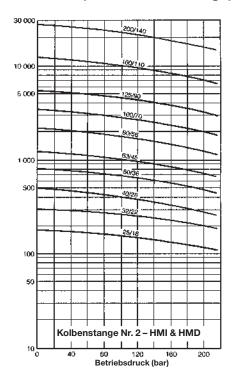
+49 (0) 451 - 87 97 740 nder

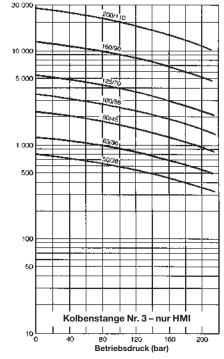

KRAUSE+KÄHLER Hydraulikkompetenz.de


Energieabsorptionsvermögen

Die unten gezeigten Daten beziehen sich auf die dauerfeste Auslegung des Zylinderrohres unter Maximaldruck. Bei erwarteten Arbeitszyklen (Doppelhübe) unter 10⁶ kann eine erhöhte Dämpfungswirkung vorgesehen werden. Für nähere Angaben bitten wir um Rückfrage.




Kopfseite (Ausfahrende Stange)



Bodenseite (Einfahrende Stange)

KRAUSE+KÄHLER **Hydraulikkompetenz.de** +49 (0) 451 - 87 97 740

Dämpfungslänge, Kolben- und Stangenmasse

1 0 0,					
Bohrungs- Ø	Kolben- stange Nr.	Stangen Ø			
25	1	12			
25	2	18			
32	1	14			
52	2	22			
40	1	18			
40	2	28			
	1	22			
50	2	36			
	3	28			
	1	28			
63	2	45			
	3	36			
	1	36			
80	2	56			
	3	45			
	1	45			
100	2	70			
	3	56			
	1	56			
125	2	90			
	3	70			
	1	70			
160	2	110			
	3	90			
	1	90			
200	2	140			

Dän	Dämpfungslänge nach ISO & DIN Nur nach ISO							
Kolbensta	ange Nr. 1	Kolbenst	ange Nr. 2	Kolbensta	ange Nr. 3			
Kopf	Boden	Kopf	Boden	Kopf	Boden			
22	20	24	20	_	-			
24	20	24	20	-	-			
29	29	29	30	-	-			
29	29	29	29	29	29			
29	29	29	29	29	29			
35	32	27	32	35	32			
35	32	26	32	29	32			
28	32	27	32	27	32			
34	41	34	41	34	41			
46	56	49	56	50	56			

Kolben mit Stange bei Nullhub kg	Stange pro 10 mm Hub		
0,12	0,01		
0,16	0,02		
0,23	0,01		
0,30	0,03		
0,44	0,02		
0,60	0,05		
0,70	0,03		
0,95	0,08		
0,80	0,05		
1,20	0,05		
1,60	0,12		
1,35	0,08		
2,30	0,08		
2,90	0,19		
2,50	0,12		
4,00	0,12		
5,10	0,30		
4,40	0,19		
7,10	0,19		
9,40	0,50		
8,00	0,30		
13,70	0,30		
17,20	0,75		
15,30	0,50		
27,00	0,50		
34,00	1,20		
30,00	0,75		

Alle Maße in mm, sofern nicht anders angegeben.

110

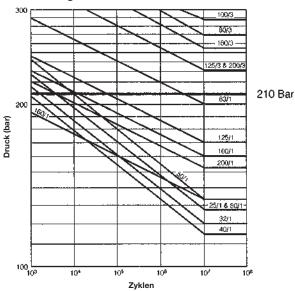
ydraulikkompetenz.de +49 (0) 451 - 87 97 740

KRAUSE+KÄHLER

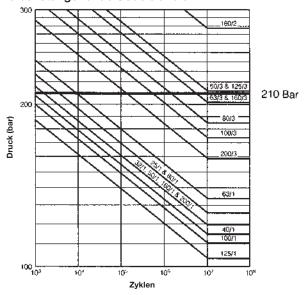
Druckeinschränkungen -Schub- und Zugbelastungen

Wenn die Kolbenstange auf Schub beansprucht wird und das Gegenstück sicher an der Stangenschulter befestigt ist, stellt Ermüdung für Kolbenstangenenden mit zwei Schlüsselflächen kein Problem dar. Bei Kolbenstangendurchmessern von 12 mm und 14 mm verringert sich die Stangenschulter bei der Ausführung mit vier Schlüsselflächen derart, dass für eine ermüdungsfreie Funktion der Arbeitsdruck auf 160 bar begrenzt werden muss.

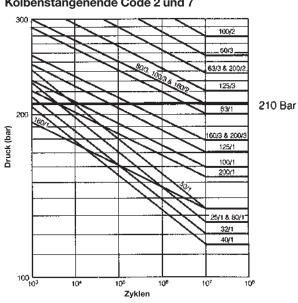
Die meisten Kombinationen von Zylinderbohrung und Kolbenstangendurchmesser arbeiten bis 210 bar ermüdungsfrei. Für die Kombinationen, in denen Druckeinschränkungen zu beachten sind, kann der maximale Druck für ermüdungsfreies Arbeiten in den nachfolgenden Diagrammen abgelesen werden.

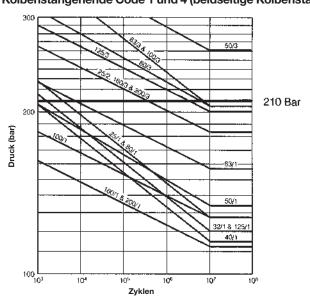

Zylinder mit beidseitiger Kolbenstange

Bei Zylindern mit beidseitiger Kolbenstange werden zwei Kolbenstangen miteinander verschraubt und der Zylinderkolben auf der stärkeren Stange befestigt. Konstruktionsbedingt ist ein Kolbenstangenende stärker belastbar als das andere vgl. hierzu auch Seite 12. Die stärkere Kolbenstange, an der Schlüsselfläche mit "K" gekennzeichnet, unterliegt den gleichen Druckbeschränkungen der entsprechenden Variante mit einseitiger Kolbenstange, wie in den Diagrammen gezeigt. Das Diagramm für den Zylinder mit beidseitiger Kolbenstange und Code 1 bzw. 4 bezieht sich hingegen nur auf die Stange mit dem kleineren Durchmesser.


Die Kurven sind nach Bohrungsdurchmesser und Stangennummer gekennzeichnet. Z.B.: 100/3 ist ein Zylinder mit 100 mm Bohrung und Kolbenstange Nr. 3.

Zeitfestigkeit der Kolbenstange unter Zugbelastung


Kolbenstangenende Code 1 und 4


Kolbenstangenende Code 5 und 9

Kolbenstangenende Code 2 und 7

Kolbenstangenende Code 1 und 4 (beidseitige Kolbenstange)

Anschlüsse und Hubgeschwindigkeiten

Baureihe HMI/HMD

Hydraulikanschlüsse

Zylinder der Baureihen HMI und HMD haben standardmäßig einen Hydraulikanschluss nach ISO 1179-1 mit zölligem Gewinde (BSPP). Alternativ stehen Hydraulikanschlüsse mit metrischem Gewinde nach ISO 9974-1 bzw. ISO 6149 zur Auswahl. Bei Anwendungen für höhere Zylindergeschwindigkeiten kann ein größerer oder ein zusätzlicher Anschluss gewählt werden.

Zylinder der Bohrungen 25 und 32 mm

Der Zylinderkopf ist in der Anschlussposition um 5 mm überhöht ausgeführt, um die erforderliche Gewindetiefe für den Hydraulikanschluss zu ermöglichen. Bei der Befestigungsart JJ mit Anschluss in Position 2 oder 4 ist der Kopf in Position 1 um 5 mm überhöht. An den Bodenseiten von Zylindern mit übergroßen Anschlüssen werden Ansatzstücke mit einer Höhe von 20 mm angebracht. Die Abmessungen Y und PJ können leicht variieren, damit übergroße Anschlüsse integriert werden können - wenden Sie sich an das Werk, wenn diese Abmessungen kritisch sind.

Anschlussgröße und Kolbengeschwindigkeit

In den nebenstehenden Tabellen werden die Kolbengeschwindigkeiten für Standard- und übergroße Anschlüsse sowie für Verbindungsleitungen angezeigt, wobei die Geschwindigkeit des Druckmediums 5 m/s beträgt. Wenn die gewünschte Kolbengeschwindigkeit zu einer Fließgeschwindigkeit des Druckmediums von über 5 m/s führt, sollte die Verwendung von größeren Leitungen mit zwei Anschlüssen pro Boden erwogen werden. Parker empfiehlt, in den Verbindungsleitungen einen Durchfluss von 12 m/s nicht zu überschreiten.

Geschwindigkeitsbeschränkungen

Beim Bewegen großer Massen, Hubgeschwindigkeiten über 0,1 m/s und vollem Arbeitshub empfehlen wir Dämpfungen - s. hierzu Seite 20. Bei Zylindern mit übergroßen Anschlüssen, wo der Strom in den Boden 8 m/s übersteigt, sollte eine nichtschwimmende Dämpfung verwendet werden.

Position von Hydraulikanschluss und Dämpfungsnadelventil

Die Tabelle zeigt die für die jeweilige Befestigungsart wählbare Position für den Hydraulikanschluss in Kopf und Boden sowie die davon abhängige Position des Dämpfungsnadelventils. Bei Zylindern der Bohrung 25 und 32 mm kann das Nadelventil bis zu 3mm über die Anschlussfläche hinausragen.

		Standardzylinderanschlüsse													
Bohr- ungs- Ø	BSPP- Anschlüsse		Durchmesser Verbindungs- leitungen		Kolbenge- schwindig- keit m/s										
25	G1/4	M14x1,5	7	11,5	0,39										
32	G¹/4	M14x1,5	7	11,5	0,24										
40	G ³ / ₈	M18x1,5	10	23,5	0,31										
50	G¹/2	M22x1,5	13	40	0,34										
63	G¹/2	M22x1,5	13	40	0,21										
80	G ³ / ₄	M27x2	15	53	0,18										
100	G ³ / ₄	M27x2	15	53	0,11										
125	G1	M33x2	19	85	0,12										
160	G1	M33x2	19	85	0,07										
200	G1 ¹ / ₄	M42x2	24	136	0,07										

	Übergro	ße Zylindera	anschlüsse (ni	cht nach DIN	24 554)
Bohr- ungs- Ø	BSPP- Anschlüsse		Durchmesser Verbindungs- leitungen		Kolbenge- schwindig- keit m/s
25	G ³ / ₈ ²	M18x1,5 2,3	10	23,5	0,80
32	G ³ / ₈ ²	M18x1,5 2,3	10	23,5	0,48
40	G ¹ / ₂	M22x1,5 ³	13	40	0,53
50	G ³ / ₄	M27x2 ³	15	53	0,45
63	G ³ / ₄	M27x2 ³	15	53	0,28
80 4	G1	M33x2	19	85	0,28
100 4	G1	M33x2	19	85	0,18
125 4	G1 ¹ / ₄	M42x2	24	136	0,18
160 ⁴	G1 ¹ / ₄	M42x2	24	136	0,11
200 4	G1 ¹ / ₂	M48x2	30	212	0,11

- 1 nicht nach DIN 24 554
- 20 mm Überhöhung am Zylinderboden
- 3 ISO 6149 Anschlüsse sind für einige Kombinationen Bohrung/Stange
- ⁴ Für Befestigungsart JJ bei Drücken über 100 bar ungeeignet

und Nade	r Anschlüsse elventile am of und -boden
l/a.mf	Anschlüsse
Kopf	Dämpfung
Boden	Anschlüsse
bouen	Dämpfung

											Е	Befestig	jung	gsa	rter	na	ch I	so	unc	IDI	N											
TI		C ui	nd		J	J 5			Н	Н		C ₆	Е	3 un	d B	В		SI	Bd			I)			D	В			D	D	
1	2	3	4	1	2	3	4	1	2	3	4	1	1	2	3	4	1	2	3	4		1	(3	1	2	3	4	1	2	3	4
2	3	4	1	3	3	1	1	3	4	1	2	2	2	3	4	1	2	3	4	1	(3		ı	3	4	1	2	3	4	1	2
1	2	3	4	1	2	3	4	1	2	3	4	1	1	2	3	4	1	2	3	4	1	2	3	4	-	1	3	3	1	2	3	4
2	3	4	1	3	4	1	2	3	3	1	1	2	2	3	4	1	2	3	4	1	3	4	1	2	3	3	-	1	3	4	1	2

⁵ Für die Baureihe HMD gelten diese Angaben nur ab Bohrung 125 mm. Bis einschließlich der Bohrung 100 mm ist bei dieser Baureihe der Anschluss nur in Position 1 oder 3 möglich. Das Dämpfungsnadelventil ist jeweils auf der gegenüberliegenden Seite angebracht.

⁶ Anschlüsse in den Positionen 2 und 4 bei Zylindern mit Bohrung 25 und 32 mm sind nur mit Stange 1 möglich.

Eigenschaften der Dichtungen und Druckmedien

Klasse	Dichtungswerkstoffe	Druckmedium nach ISO 6743/4-1982	Temperaturbereich
1	Nitril (NBR), PTFE, Polyamid, verstärkte Polyurethane (AU)	Mineralöl HH, HL, HLP, HLP-D, HM, HV, MIL-H-5606 Öl, Luft, Stickstoff	-20°C bis +80°C
2	Nitril (NBR), PTFE, Polyamid	Wasserglycol (HFC)	-20°C bis +60°C
5	Fluor-Elastomere (FPM), PTFE, Polyamid	Schwer entflammbare Medien auf Phosphatesterbasis (HFD-R) Auch für Mineralöl bei hohen Temperaturen geeignet. Nicht für Skydrol. Hinweise der Hersteller beachten.	-20°C bis +150°C
6	Diverse Verbundstoffe, darunter Nitril, Polyamid, verstärktes Polyurethan, Wasser Öl-in-Wasser Emulsion 95/5 (HFA)		+5°C bis +55°C
7	Fluor-Elastomere und PTFE	Wasser-in-Öl Emulsion 60/40 (HFB)	+5°C bis +60°C

Spezialdichtungen

Spezialdichtungen, einschließlich Dichtungen für Bioöle, sind verfügbar. Fügen Sie bei der Bestellung ein S (Spezial) in den Bestellcode ein, und geben Sie das Druckmedium an.

Low-Friction-Dichtungen

Für Niederdruckanwendungen, wo es auf eine äußerst geringe Reibung und die Abwesenheit von Stick-Slip ankommt, sind reibungsarme Low-Friction-Dichtungen verfügbar - siehe Seite 5.

Wasserbetrieb

Für den Betrieb mit Wasser bzw. wasserhaltigen Druckflüssigkeiten werden die Zylinder mit Kolbenstangen aus rostfreiem Werkstoff, speziellen Dichtungswerkstoffen und beschichteten Oberflächen ausgerüstet. Rostfreier Kolbenstangenwerkstoff hat geringere Festigkeitswerte als das Standardmaterial. Bitte geben Sie daher zur Überprüfung der Festigkeit den maximalen Betriebsdruck oder die Last und Geschwindigkeit an.

Parker Hannifin gewährleistet die fehlerfreie Herstellung der für den Betrieb mit Wasser bzw. wasserhaltigen Druckflüssigkeiten modifizierten Zylinder, übernimmt jedoch keinerlei Haftung für den vorzeitigen Ausfall durch Korrosion, Elektrolyse oder Mineralablagerungen.

Gewichte - Baureihen HMI und HMD

Bohr-		Befesti	gungs	arten –
ungs Ø	Stangen Ø	TB, TC, TD kg	C kg	JJ, HH kg
25	12 18	1,2	1,4	1,5
32	14 22	1,6 1,7	1,9	2,0
40	18	3,7	4,0	4,7
	28	3,8	4,1	4,8
	22	5,9	6,5	7,2
50	36 28	6,0	6,6	7,3
	28	8,5	9,7	
63	45	8,6	9,8	10
	36	8,7	9,9	
80	36 56 45	16	18	19
	45	22	24	25
100	70		24	26
	56	23	25	20
	56	42	44	48
125	90		45	
	70	43		49
160	70 110	69	73	78
	90	70	74	79
	90	122	129	138
200	140	123	130	130
	110	124	131	140

Befesti	gungs	arten –	Gewich	t bei N	ullhub	Gewicht pro 10
TB, TC, TD kg	C kg	JJ, HH kg	B, BB, SBd kg	D, DB kg	DD kg	mm Hub
1,2	1,4	1,5	1,4	1,3	1,5	0,05
1,2	1,4	1,5	1,4	1,3	1,6	0,06
1,6	1,9	2,0	1,9	1,7	2,0	0,06
1,7	1,9	2,0	1,9	1,7	2,0	0,08
3,7	4,0	4,7	4,2	3,9	4,6	0,09
3,8	4,1	4,8	4,3	4,0	4,7	0,12
5,9	6,5	7,2	7,0	6,3	7,9	0,14
6.0	6.6	7.0	7,1	0,3	0.0	0,18
6,0	6,6	7,3	7,2	6,4	8,0	0,16
8,5	9,7			8,9		0,19
8,6	9,8	10	10	9,0	11	0,27
8,7	9,9			9,1		0,22
						0,27
16	18	19	20	17	21	0,39
						0,32
22	24	25	28		26	0,40
22	24	26	28	23	27	0,58
23	25	20	29		21	0,47
42	44	48	53	43	48	0,65
42	45	40	F 4	43	49	0,95
43	45	49	54	44	50	0,76
69	73	78	90	71	84	1,0
69	13	10	91	72	85	1,4
70	74	79	92	12	00	1,2
122	129		157	127	150	1,5
123	130	138	158	128	153	2,3
124	131	140	160	129	155	1,8

Gewichte für das Zylinderzubehör finden sie auf den Seite 13.

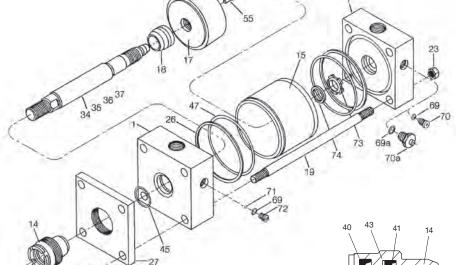
Zugstangenzylinder

Baureihe HMI/HMD

Reparatur- und Dichtungssätze

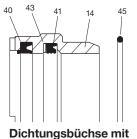
Die Reparatur- und Dichtungssätze von Zylindern der Baureihe HMI und HMD ermöglichen eine einfache Bestellung und Wartung. Sie enthalten einsatzfertige Baugruppen und werden mit kompletten Anleitungen geliefert. Bei Bestellung dieser Sätze sind die Daten auf dem Typenschild des Zylinderrohrs und damit folgende Informationen anzuführen:

Seriennummer - Bohrung - Hub - Modellnummer - Druckmedium

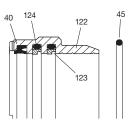

Teileliste

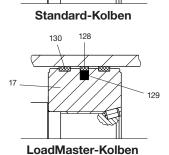
- 1 Kopf
- 7 Boden
- 14 Büchse/Einsatz
- 15 Zylinderrohr
- 17 Kolben
- 18 Dämpfungsbüchse
- 19 Zugstange
- 23 Zugstangenmutter
- 26 Stützring (nicht für Zylinder mit 25-50 mm Bohrung)
- 27 Halteplatte
- 34 Kolbenstange einseitig, ungedämpft
- 35 Kolbenstange einseitig, kopfseitige Dämpfung
- 36 Kolbenstange einseitig, bodenseitige Dämpfung

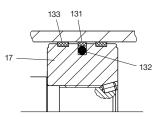
- 71 Kugel zu Rückschlagventil Bohrungen größer als 100 mm
- 72 Schraube für Rückschlagventil Bohrungen größer als 100 mm
- 73 Selbstzentrierender Dämpfungsring
- 74 Haltering für Dämpfungsring
- 122 Reibungsarme Büchse
- 123 PTFE-Dichtring für 122
- 124 Vorspannring für PTFE-Dichtring 123
- 125 Standard-Kolbendichtung
- 126 Vorspannring für Standard-Kolbendichtung 125
- 127 Tragring für Standard-Kolben
- 128 LoadMaster-Kolbendichtung
- 129 Vorspannring für LoadMaster-Kolbendichtung
- 130 Tragring für LoadMaster-Kolben
- 131 Dichtung für reibungsarmen Kolben
- 132 Vorspannring für reibungsarme Kolbendichtung 131
- 133 Tragring für reibungsarmen Kolben
- Nicht abgebildet
- ² s. Seite 12 Stärke beidseitiger Kolbenstangen


Stangen Ø	
12	
14	
18	
22	
28	
36	
45	
56	l
70	
90	
110	
140	ı

Steck- schlüssel	Haken- schlüssel
O)	
69590	11676
69590	11676
84765	11676
69591	11676
84766	11703
69592	11703
69593	11677
69595	11677
69596	11677
84768	11677
_	-
_	_




- 40 Abstreifer zu 14 und 122
- 41 Lipseal zu 14
- 43 Stützring für Lipseal 41 (Dichtungsklasse 5)
- 45 O-Ring Büchse/Kopf
- 47 O-Ring Zylinderrohr
- 55 Sicherungsstift Kolben/Stange
- 571 Kolbenstange beidseitig, (stärkere²) Stange, ungedämpft
- 581 Kolbenstange beidseitig, (stärkere²) Stange, Enddämpfung an einer Seite
- 601 Kolbenstange beidseitig, (schwächere2) Stange, ungedämpft
- 61¹ Kolbenstange beidseitig, (schwächere²) Stange, Enddämpfung an einer Seite
- 69 O-Ring zu Nadel- und Rückschlagventil
- 69a O-Ring zu Nadelventil in Cartridgebauweise
- 70 Nadelventil
- 70a Nadelventil in Cartridgebauweise



Dichtungen

Servo-Büchse mit Dichtungen

Reibungsarmer Kolben

KRAUSE+KÄHLER Hydraulikkompetenz.de+49 (0) 451 - 87 97 740

Inhalt und Teilenummern der Dichtungssätze für Kolben und Büchse*

(vgl. Zuordnung der Teilenummern auf voriger Seite)

Stangendichtsatz mit Dichtungsbüchse – Standard enthält die Positionen 14, 40, 41, 43 und 45.

Stangendichtsatz ohne Dichtungsbüchse – Standard enthält die Positionen 40, 41, 43 und 45.

Stangendichtsatz mit Dichtungsbüchse – Low-Friction enthält die Positionen 122, 40, 45 und je 2x die Position 123 und 124.

Stangendichtsatz ohne Dichtungsbüchse – Low-Friction

enthält die Positionen 40, 45 und je 2x die Position 123 und 124.

Stangen Ø	m	tsatz iit ungs-	Standard Dichtsat ohne Dichtung büchse	z s-	Low-Frictior - Dichtsatz mit Dichtungs- büchse*	Low-Friction - Dichtsatz ohne Dichtungs- büchse*
12	RG2HI	M0121	RK2HM01	21	RG2HMF012	RK2HMF0121
14	RG2H	M0141	RK2HM01	41	RG2HMF014	RK2HMF0141
18	RG2HI	M0181	RK2HM01	81	RG2HMF018	RK2HMF0181
22	RG2HI	M0221	RK2HM02	21	RG2HMF022	RK2HMF0221
28	RG2HI	M0281	RK2HM02	81	RG2HMF028	RK2HMF0281
36	RG2HI	M0361	RK2HM03	61	RG2HMF036	RK2HMF0361
45	RG2HI	M0451	RK2HM04	51	RG2HMF045	RK2HMF0451
56	RG2HI	M0561	RK2HM05	61	RG2HMF056	RK2HMF0561
70	RG2HI	M0701	RK2HM07	01	RG2HMF070	RK2HMF0701
90	RG2HI	M0901	RK2HM09	01	RG2HMF090	RK2HMF0901
110	RG2H	M1101	RK2HM11	01	RG2HMF110	RK2HMF1101
140	RG2HI	M1401	RK2HM14	01	RG2HMF140	RK2HMF1401

Kolbendichtsatz – Standard enthält die Positionen 125 und 126 und je 2x die Positionen 127, 47 und 26 (nicht für die Zylinderbohrungen 25 bis 50).

Kolbendichtsatz – LoadMaster enthält die Positionen 128 und 129 und je 2x die Positionen 130, 47 und 26 (nicht für die Zylinderbohrungen 25 bis 50).

Kolbendichtsatz – Low-Friction enthält die Positionen 131 und 132 und je 2x die Positionen 133, 47 und 26 (nicht für die Zylinderbohrungen 25 bis 50).

Bohrungs Ø	Kol	bendichtsatz – Standard*	Kolbendichtsatz – LoadMaster*	Kolbendichtsatz – Low-Friction*
25	F	N025HM001	PZ025HM001	PF025HM001
32	F	N032HM001	PZ032HM001	PF032HM001
40	F	N040HM001	PZ040HM001	PF040HM001
50	F	N050HM001	PZ050HM001	PF050HM001
63	F	N063HM001	PZ063HM001	PF063HM001
80	F	N080HM001	PZ080HM001	PF080HM001
100	F	N100HM001	PZ100HM001	PF100HM001
125	F	N125HM001	PZ125HM001	PF125HM001
160	F	N160HM001	PZ160HM001	PF160HM001
200	F	N200HM001	PZ200HM001	PF200HM001

* Dichtungsklassen - Bestellung

Teilenummern in obigen Tabellen beziehen sich auf Dichtungen der Klasse 1, zu ersehen aus der letzten Ziffer der Teilenummer. Bei Dichtungsklassen 2, 5, 6 oder 7 ist die Endziffer entsprechend in '2', '5', '6' bzw. '7' abzuändern.

Reparatursätze

(vgl. Zuordnung der Teilenummern auf voriger Seite)

Zylinderkopf

Ungedämpft: 1, 26, 47

Gedämpft: 1, 26, 47, 69, (69a), 70, (70a), 71, 72

Zylinderboden

Ungedämpft: 7, 26, 47

Gedämpft: 7, 26, 47, 69, (69a), 70, (70a), 73, 74

Zylinderrohr

Alle Typen: 15

Nadelventil

konventionell: 69, 70 Cartridgeversion: 69a, 70a

Rückschlagventil

konventionell: 69, 71, 72 (Bohrungen über 100 mm)

Kolbenstange

Enthält eine einbaufertige Kolbenstange mit Kolben. Der Kolben ist mit entsprechenden Dichtungen ausgestattet – s. Übersicht unten – und einem Stangenbausatz nach folgender Aufstellung.

Kolben

Standard: 17, 125, 126, 127 x 2 LoadMaster: 17, 128, 129, 130 x 2 Reibungsarm: 17, 131, 132, 133 x 2

Kolbenstange

Einseitig, ungedämpft:34Einseitig, Kopfdämpfung:35, 18Einseitig, Bodendämpfung:36Einseitig, Dämpfung beide Enden:37, 18

Doppelseitig, ungedämpft: 57, 60
Doppelseitig, Dämpfung starke Stange: 58, 60, 18
Doppelseitig, Dämpfung schwache Stange: 58, 61, 18
Doppelseitig, Dämpfung beide Enden: 58, 61, 18 x 2

Reparaturen

Zylinder der Baureihen HMI und HMD sind wartungs- und reparaturfreundlich, doch lassen sich bestimmte Arbeiten nur in unserem Werk ausführen. Es entspricht der üblichen Verfahrensweise, einen zwecks Instandsetzung eingesandten Zylinder mit den erforderlichen Ersatzteilen auszurüsten, um ihn auf einen 'so gut wie neuen' Zustand zu bringen. Spricht der Zustand des eingeschickten Zylinders aber gegen eine wirtschaftliche Reparatur, erhalten Sie umgehend Nachricht.

Kolbenstangenende – Ausführungen

Baureihe HMI/HMD

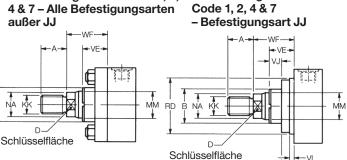
Baureihen HMI und HMD

Alle Kolbenstangenenden können mit zwei oder vier Schlüsselflächen ausgeführt werden - siehe Hinweis "Druckeinschränkungen" auf Seite 23.

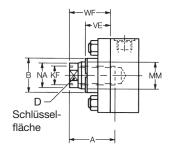
HMI Zylindern können alle Kolbenstangennummern einer Bohrung mit den jeweiligen Gewindearten zugeordnet werden, die in der Tabelle aufgeführt sind.

HMD Zylinder sind nur mit den Kolbenstangennummern 1 und 2, und nur mit den in der Tabelle gelb gekennzeichneten Gewindearten verfügbar.

Die gewünschte Kombination von Kolbenstangendurchmesser, Gewindeart und Anzahl der Schlüsselflächen ist der nachfolgenden Tabelle zu entnehmen und im Modellschlüssel auf Seite 29 durch den entsprechenden Code zu wählen.

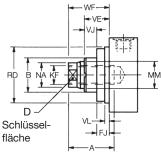

Kolbenstangenende Code 5 und 9

Kolbenstangen mit Innengewinde (Code 5 und 9) können bei kurzhubigen Zylindern (Hub < 50 mm) der Bohrungen 160 und 200 mm nicht eingesetzt werden.


Kolbenstangenende Code 3

Kolbenstangen mit einem kundenspezifischen Ende werden durch den Code 3 gekennzeichnet. Der Bestellung ist in diesem Fall eine detaillierte Beschreibung beizufügen. Bitte die Abmessungen KK bzw. KF, A, das Übermaß (WF - VE) sowie die Gewindeform angeben.

Kolbenstangenende Code 1, 2, 4 & 7 - Alle Befestigungsarten außer JJ

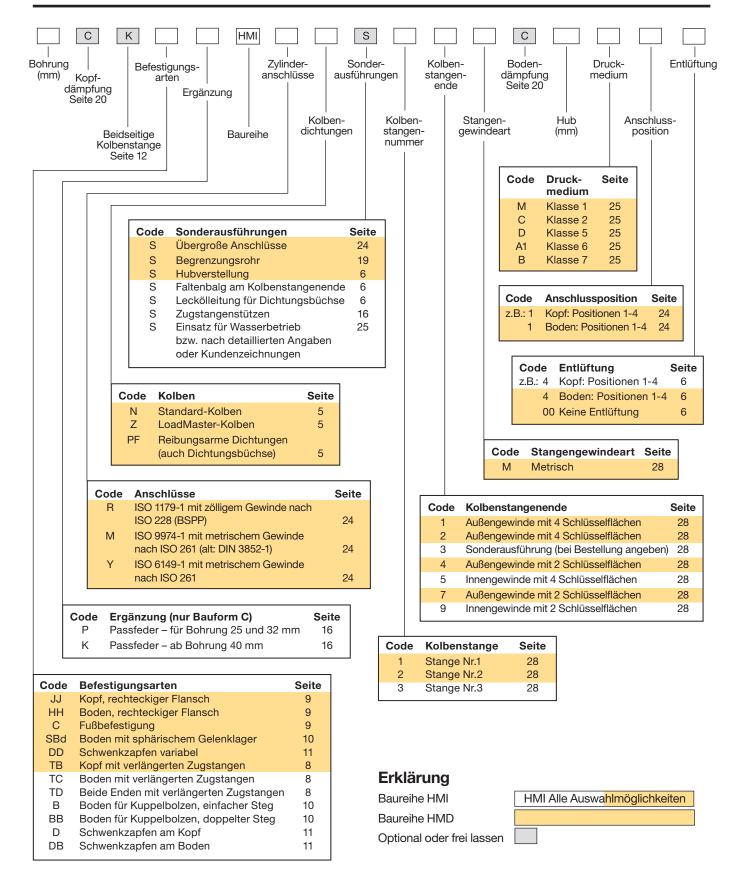


Kolbenstangenende Code 5 & 9 - Alle Befestigungsarten außer JJ

Kolbenstangenende Code 5 & 9 - Befestigungsart JJ

Kolbenstangenende

Kolbenstangenende – Abmessungen Vgl. S. 23 Druckeinschränkung der Kolbenstangen


Bohrungs-		MM Stangen	Code 1 (4 Flä Code 4 (2 Flä		Code 2 (4 Fläc Code 7 (2 Fläc		Code 5 (4 Fla		В	D	NA	VE	WF	Befe	Nı estigu		rt JJ
Ø	Nr.	Ø	KK	A	KK	A	KF	A	f9	0	IVA	V.	***	VL min	RD f8	VJ	FJ
25	1	12	M10x1,25	14	_	_	M8x1	14	24	10	11	16	25	3	38	_	10
25	2	18	M14x1,5	18	M10x1,25	14	M12x1,25	18	30	15	17	16	25	3	38	6	10
00	1	14	M12x1,25	16	-	_	M10x1,25	16	26	12	13	22	35	3	40	10	10
32	2	22	M16x1,5	22	M12x1,25	16	M16x1,5	22	34	18	21	22	35	3	42	12	10
40	1	18	M14x1,5	18	_	_	M12x1,25	18	30	15	17	16	35	3	62	6	10
40	2	28	M20x1,5	28	M14x1,5	18	M20x1,5	28	42	22	26	22	35	3	62	12	10
	1	22	M16x1,5	22	-	_	M16x1,5	22	34	18	21	22				6	
50	2	36	M27x2	36	M16x1,5	22	M27x2	36	50	30	34	25	41	4	74	9	16
	3	28	M20x1,5	28	M16x1,5	22	M20x1,5	28	42	22	26	22				6	
	1	28	M20x1,5	28	-	-	M20x1,5	28	42	22	26	22			75	6	
63	2	45	M33x2	45	M20x1,5	28	M33x2	45	60	39	43	29	48	4	00	13	16
	3	36	M27x2	36	M20x1,5	28	M27x2	36	50	30	34	25			88	9	
	1	36	M27x2	36	-	_	M27x2	36	50	30	34	25			82	5	
80	2	56	M42x2	56	M27x2	36	M42x2	56	72	48	54	29	51	4	105		20
	3	45	M33x2	45	M27x2	36	M33x2	45	60	39	43	29			105	9	
	1	45	M33x2	45	-	-	M33x2	45	60	39	43	29			92	7	
100	2	70	M48x2	63	M33x2	45	M48x2	63	88	62	68	32	57	5	105	10	22
	3	56	M42x2	56	M33x2	45	M42x2	56	72	48	54	29			125	7	
	1	56	M42x2	56	-	-	M42x2	56	72	48	54	29			105	9	20
125	2	90	M64x3	85	M42x2	56	M64x3	85	108	80	88	32	57	5	450	40	00
	3	70	M48x2	63	M42x2	56	M48x2	63	88	62	68	32			150	10	22
	1	70	M48x2	63	_	-	M48x2	63	88	62	68	32			125	10	22
160	2	110	M80x3	95	M48x2	63	M80x3	95	133	100	108	32	57	5	470	_	0.5
	3	90	M64x3	85	M48x2	63	M64x3	85	108	80	88	32			170	7	25
	1	90	M64x3	85	_	-	M64x3	85	108	80	88	32			150	10	22
200	2	140	M100x3	112	M64x3	85	M100x3	112	163	128	138	32	57	5	046	_	05
	3	110	M80x3	95	M64x3	85	M80x3	95	133	100	108	32			210	7	25

KRAUSE+KÄHLER

Zugstangenzylinder **Baureihe HMI/HMD**

Bestellinformation

Zylinder mit beidseitiger Kolbenstange

Zubehör

Falls erforderlich bitte ergänzen. Bitte angeben, ob das Zubehör am Zylinder montiert werden soll oder nicht.

Parker weltweit

Europa, Naher Osten, Afrika

AE – Vereinigte Arabische Emirate, Dubai

Tel: +971 4 8127100 parker.me@parker.com

AT – Österreich, Wiener Neustadt Tel: +43 (0)2622 23501-0 parker.austria@parker.com

AT - Osteuropa, Wiener Neustadt Tel: +43 (0)2622 23501 900 parker.easteurope@parker.com

AZ - Aserbaidschan, Baku Tel: +994 50 2233 458 parker.azerbaijan@parker.com

BE/LU – Belgien, Nivelles Tel: +32 (0)67 280 900 parker.belgium@parker.com

BY - Weißrussland, Minsk Tel: +375 17 209 9399 parker.belarus@parker.com

CH - Schweiz, Etoy, Tel: +41 (0)21 821 87 00 parker.switzerland@parker.com

CZ – Tschechische Republik, Klecany

Tel: +420 284 083 111 parker.czechrepublic@parker.com

DE – Deutschland, Kaarst Tel: +49 (0)2131 4016 0 parker.germany@parker.com

DK - Dänemark, Ballerup Tel: +45 43 56 04 00 parker.denmark@parker.com

ES - Spanien, Madrid Tel: +34 902 330 001 parker.spain@parker.com

FI - Finnland, Vantaa Tel: +358 (0)20 753 2500 parker.finland@parker.com

FR – Frankreich, Contamine sur Arve

Tel: +33 (0)4 50 25 80 25 parker.france@parker.com

GR - Griechenland, Athen Tel: +30 210 933 6450 parker.greece@parker.com

HU - Ungarn, Budapest Tel: +36 1 220 4155 parker.hungary@parker.com

IE - Irland, Dublin Tel: +353 (0)1 466 6370 parker.ireland@parker.com IT - Italien, Corsico (MI) Tel: +39 02 45 19 21 parker.italy@parker.com

KZ - Kasachstan, Almaty Tel: +7 7272 505 800 parker.easteurope@parker.com

NL - Niederlande, Oldenzaal Tel: +31 (0)541 585 000 parker.nl@parker.com

NO - Norwegen, Asker Tel: +47 66 75 34 00 parker.norway@parker.com

PL - Polen, Warschau Tel: +48 (0)22 573 24 00 parker.poland@parker.com

PT - Portugal, Leca da Palmeira Tel: +351 22 999 7360 parker.portugal@parker.com

RO – Rumänien, Bukarest Tel: +40 21 252 1382 parker.romania@parker.com

RU - Russland, Moskau Tel: +7 495 645-2156 parker.russia@parker.com

SE - Schweden, Spånga Tel: +46 (0)8 59 79 50 00 parker.sweden@parker.com

SK - Slowakei, Banská Bystrica Tel: +421 484 162 252 parker.slovakia@parker.com

SL – Slowenien, Novo Mesto Tel: +386 7 337 6650 parker.slovenia@parker.com

TR – Türkei, Istanbul Tel: +90 216 4997081 parker.turkey@parker.com

UA - Ukraine, Kiew Tel +380 44 494 2731 parker.ukraine@parker.com

UK - Großbritannien, Warwick Tel: +44 (0)1926 317 878 parker.uk@parker.com

ZA – Republik Südafrika, Kempton Park Tel: +27 (0)11 961 0700 parker.southafrica@parker.com

Europäisches Produktinformationszentrum Kostenlose Rufnummer: 00 800 27 27 5374 (von AT, BE, CH, CZ, DE, DK, EE, ES, FI, FR, IE, IL, IS, IT, LU, MT, NL, NO, PL, PT, RU, SE, SK, UK, ZA)

Nordamerika

CA – Kanada, Milton, Ontario Tel: +1 905 693 3000

US – USA, Cleveland (Industrieanwendungen) Tel: +1 216 896 3000

US - USA, Elk Grove Village (Mobilanwendungen) Tel: +1 847 258 6200

Asien-Pazifik

AU – Australien, Castle Hill Tel: +61 (0)2-9634 7777

CN - China, Schanghai Tel: +86 21 2899 5000

HK – Hong Kong Tel: +852 2428 8008

IN - Indien, Mumbai Tel: +91 22 6513 7081-85

JP – Japan, Fujisawa Tel: +81 (0)4 6635 3050

KR - Korea, Seoul Tel: +82 2 559 0400

MY - Malaysia, Shah Alam Tel: +60 3 7849 0800

NZ - Neuseeland, Mt Wellington

Tel: +64 9 574 1744

SG - Singapur Tel: +65 6887 6300

TH - Thailand, Bangkok Tel: +662 717 8140

TW - Taiwan, Taipei Tel: +886 2 2298 8987

Südamerika

AR – Argentinien, Buenos Aires Tel: +54 3327 44 4129

BR – Brasilien, Cachoeirinha RS Tel: +55 51 3470 9144

CL - Chile, Santiago Tel: +56 2 623 1216

MX - Mexico, Apodaca Tel: +52 81 8156 6000

© 2011 Parker Hannifin Corporation. Alle Rechte vorbehalten.

Katalog HY07-1150/DE POD 06/2011 ZZ

Parker Hannifin GmbH & Co. KG

Pat-Parker-Platz 1 D-41564 Kaarst

Tel.: +49 (0)2131 4016 0 Fax: +49 (0)2131 4016 9199 www.parker.com

Ihr Parker-Handelspartner