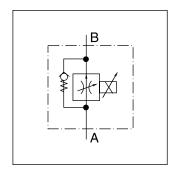
Kenndaten

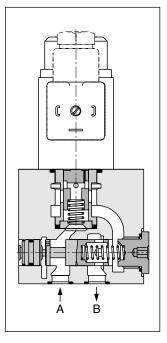
Proportional-Stromregelventile der Serie DUR*L06 werden zur lastkompensierten Regelung des Volumenstroms von A nach B eingesetzt. In Gegenrichtung strömt das Öl frei über das Rückschlagventil. Sollen sowohl der Zulauf zum Verbraucher als auch der Ablauf vom Verbraucher lastdruckunabhängig geregelt werden, kann mit einer Gleichrichterplatte der Volumenstrom immer in Arbeitsrichtung des Stromreglers von A nach B geleitet werden.

Funktion

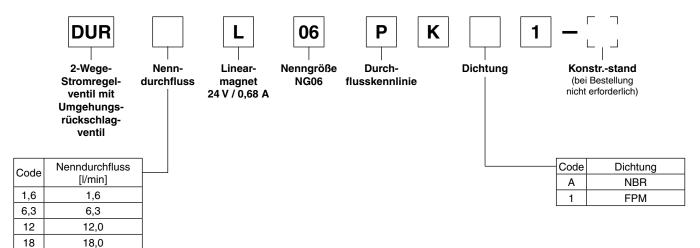
Wird ein Magnetstrom vorgegeben, öffnet der Messkolben gegen die Feder, und der am Kanal A anstehende Ölstrom fließt über die Druckwaage geregelt zum Kanal B.

Mit Hilfe der Druckwaage wird das Druckgefälle an dem Messfenster konstant gehalten. Damit werden Lastdruckänderungen kompensiert, und der Ölstrom bleibt ebenfalls konstant.


Die optimale Funktion wird in Kombination mit dem digitalen Verstärker PCD00A-400 erreicht.

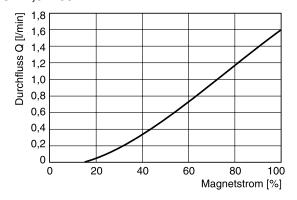

Merkmale

- · Geringe Hysterese
- Hohe Wiederholgenauigkeit
- Lastunabhängiger Volumenstrom
- Rückschlagumgehungsventil
- Lochbild nach ISO 6263: 1987
- 4 Volumenstrombereiche

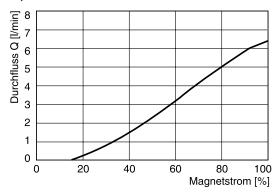

Hinweis

Gleichrichter-Zwischenplatte zur Umlenkung des Ölstromes siehe Kapitelende.

Bestellschlüssel

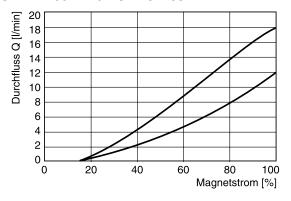

KRAUSE+KÄHLER

Bestellschlüssel / Kennlinien


Technische Daten

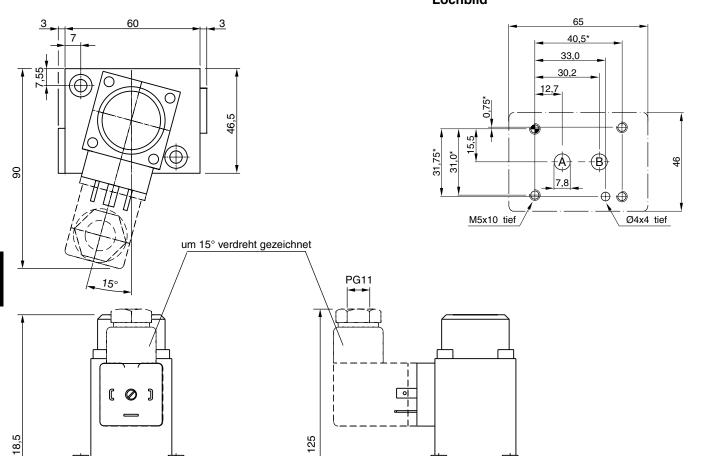
Bauart		Elektrisch verstellbares Blendenventil mit Lastrückmeldung
Befestigungsart		Anschlussplatte NG06, Lochbild DIN 24340, ISO, CETOP
Einbaulage		beliebig, vorzugsweise waagerecht
Umgebungstemperatur	[°C]	-20 +60
MTTF _D -Wert	[Jahre]	150
Gewicht	[kg]	1,6
Spannungsart	[V]	24
Magnet Nennstrom	[mA]	680
Einschaltdauer		100 % ED
Steckerverbindung		Anschluss nach EN 175301-803
Schutzart		IP 65 nach EH60529 (mit korrekt montierter Leitungsdose)
Verstärker		PCD00A-400
Betriebsdruck	[bar]	max. 210
Druckmedium		Hydrauliköl nach DIN 51524
Druckmediumtemperatur	[°C]	-20+70 (NBR: -25+70)
Viskosität, zulässig empfohlen	[cSt] / [mm²/s] [cSt] / [mm²/s]	
Zulässiger Verschmutzungsgrad		ISO 4406 (1999); 18/16/13
Min. Druckdifferenz	[bar]	DUR 1,6: 3; DUR 6,3/12: 5; DUR 18: 8
Hysterese bei Q _{Nenn}	[%]	6
Hysterese bei Q ≤ 20 % • Q _{Nenn}	[%]	6
Wiederholgenauigkeit bei ∆U _{Soll} = 5 V	[%]	2

Durchflusskennlinien **DUR 1,6 L 06 PK***


DUR 6,3 L 06 PK*

Alle Kennlinien gemessen mit HLP46 bei 50 °C.

DUR DE.indd 25.07.2018


DUR 12 L 06 PK* / DUR 18 L 06 PK*

Serie DUR*L06

Lochbild

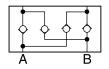
Schraubensätze (Zylinderschrauben ISO 4762-12.9 nicht im Lieferumfang enthalten)

Nenngröße	Ventil-	Ammahi	Anzugs-	Ventil ohne Gle	ichrichterplatte	Ventil mit Gleichrichterplatte				
Ventil	modell	Anzahl	moment [Nm]	Abmessungen	Bestellnummer	Abmessungen	Bestellnummer			
NG6	DUR*L06	2	7,6 Nm	2xM5x60	BK380	2 x M5x100	BK466			

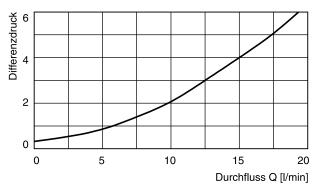
Dichtungssätze

55

NBR	FPM
SK-DUR***L	SK-DUR***L FPM

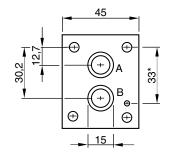

Zubehör

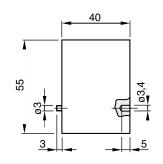
Gleichrichter-Zwischenplatte

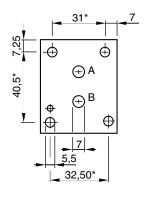

Wird in einer Hydrauliksteuerung ein 2-Wege-Stromregelventil mit einer Gleichrichter-Zwischenplatte erweitert, so kann der Ölstrom im Zu- und Ablauf zum Verbraucher geregelt werden.

Aufbau

Die Gleichrichter-Zwischenplatte ist mit 4 gleichen, symmetrisch angeordneten Rückschlagventilsätzen ausgeführt. Dadurch ist in beiden Durchflussrichtungen der Differenzdruck gleich.




∆p/Q-Kennlinie



Gemessen mit HLP46 bei 50 $^{\circ}$ C.

Abmessungen

Maßtoleranzen

* : ± 0,1 mm Rest : ± 0,2 mm

Freimaße bei Bohrungen und Silhouette

des Ventilgehäuses

Bestellschlüssel: HR OA 06 C

O-Ring zur Abdichtung der Anschlussfläche

Anschlüsse	Abmessungen	erforderliche Anzahl
A, B	12 x 1,5	2

Anschlussplatten 1)

Anschlussplatte	
SPD 22B 910	P, A, B und T = G 1/4
SPD 23B 910	P, A, B und T = G 1/8

¹⁾ Details siehe Kapitel 12, Serie SPD

Noti	i ze i	1	1-30	000/	DΕ														+49	9 (0)) 45	<i>i</i> 1 -
																						_
	-																					
	+																					
		1																				

