

Hydraulikkompetenz.de +49 (0) 451 - 87 97 740 ED® Ermeto Original Rohre/Rohrbogen

+49 (0) 451 - 87 97 740

Angaben zu EO-Rohren

1. Stahlsorten, mechanische Eigenschaften, Ausführungsart

EO-Stahlrohre

Stahlsorte	Zugfestigkeit Rm	Streckgrenze ReH	Bruchdehnung A5 (längs)	Ausführungsart
Feinkorngüte E235N nach EN 10305-4 (St. 37.4 gemäß DIN 1630/DIN 2391, alte Bezeichnung)	340 N/mm² min. 49.000 lb/in²	235 N/mm ² min. 34.000 lb/in ²	25% min.	Nahtlos kaltgezogen, blank geglüht, DIN EN 10305-1 und 4

EO-Rohre aus nichtrostenden Stählen

Stahlsorte	Zugfestigkeit Rm	1% Dehngrenze	Bruchdehnung A5 (längs)	Ausführungsart
Werkstoff Nr. 1.4571 X6CrNiMoTi17122	500 N/mm ² min. 72.500 lb/in ²	245 N/mm² min. 35.500 lb/in²	35% min.	Nahtlos kaltgezogen, zunderfrei, wärmebehandelt, entspr. DIN EN 10216-5 Tab. 6

2. Prüfungen und Bescheinigungen

Alle Rohre werden einer zerstörungsfreien Dichtigkeitsprüfung unterzogen und zum Nachweis entsprechend gekennzeichnet. Die Kennzeichnung ersetzt ein Werkszeugnis DIN EN 10204-2.2. Für Rohre aus 1.4571 gilt Prüfklasse 1 DIN EN 10216-5 Tabelle 7.

3. Empfohlene Biegeradien

Für das Kaltbiegen von Rohren mit Biegevorrichtungen oder von Hand wird ein Biegeradius von 3× Rohraußendurchmesser empfohlen.

4. Schweißeignung und Schweißbarkeit

Rohre aus E235N sind nach den bekannten Verfahren gut schweißbar. Rohre aus Werkstoff 1.4571 sind für die Lichtbogenschweißung geeignet. Der erforderliche Schweißzusatz ist nach DIN EN 1600 und DIN EN 12072 Teil 1 unter Berücksichtigung des Verwendungszwecks und des Schweißverfahrens auszuwählen.

5. Näherungsweise Berechnung des Durchflusswiderstandes gerader Rohrleitungen

Der Durchflusswiderstand und damit der Rohrleitungswirkungsgrad wird durch den Rohrinnendurchmesser, den Volumenstrom (gemessen oder berechnet) sowie durch die Eigenschaften des Mediums beeinflusst. Um möglichst geringe Verluste im Rohrleitungssystem zu haben, ist weitgehendst laminare Strömung anzustreben.

Der Übergang von der laminaren zur turbulenten Strömung, die einen erhöhten Durchflusswiderstand bringt, wird allgemein durch die Reynolds-Zahl Re 2320 definiert. Da der Übergang nicht scharf abgegrenzt ist, kann der Übergangsbereich praktisch nur messtechnisch erfasst werden. Setzt man für eine vereinfachte Berechnung den Übergang bei Re 2320 und die Rohrinnenfläche als "technisch glatt" voraus, so lassen sich die Grenzgeschwindigkeiten w krit bzw. die Grenzvolumenströme V krit, bei denen der Übergang von der

laminaren zur turbulenten Strömung erfolgt, nach den folgenden Formeln abschätzen:

$$w_{crit.} = \frac{2.32 \cdot v}{d_i} \text{ [m/s]}$$

 $q_{v. crit.} = 0.109 \cdot d_i \cdot v \text{ [I/min]}$

 d_i = Innen-Ø in mm

 $v = \text{kinematic viscosity in mm}^2/\text{s}$

Zur näherungsweisen Berechnung des Druckabfalls in bar/1 m Rohrlänge können die nachfolgenden Formeln herangezogen werden:

1. Laminarer Bereich:

$$p_{v} = \frac{0.32 \cdot w \cdot v \cdot \rho}{d_{i}^{2} \cdot 10^{3}} = \frac{6.79 \cdot q_{v} \cdot v \cdot \rho}{d_{i}^{4} \cdot 10^{3}} [bar/1 m]$$

2. Turbulenter Bereich:

$$p_{v} = \frac{0.281 \cdot w^{1.75} \cdot v^{0.25} \cdot \rho}{d_{i}^{1.25} \cdot 10^{3}}$$
$$= \frac{59 \cdot q_{v}^{1.75} \cdot v^{0.25} \cdot \rho}{d_{i}^{4.75} \cdot 10^{3}} \text{[bar/1 m]}$$

w= Strömungsgeschwindigkeit in m/s; $\upsilon=$ kinemat. Viskosität in mm²/s; q= Volumenstrom in l/min.; $\rho=$ Dichte des Mediums in kg/m³; $d_i=$ Rohrinnendurchmesser in mm. Detailliertere Berechnungen des Durchflusswiderstands setzen eine genaue Kenntnis des Rohrleitungssystems und der Betriebsbedingungen voraus. Weitergehende Berechnungsmethoden sind der einschlägigen Literatur zu entnehmen.

Rohr- und Leitungsspezifikationen

Empfohlene Stahlrohre und Leitungen

Parker empfiehlt den Einsatz von nahtlos kaltgezogenen und normalgeglühten (Abkürzung +N) Hydraulikleitungsrohren und Leitungen, entsprechend:

DIN-EN 10305 (alt DIN 2391) und ISO 3304

Für die Montage von Stahlverschraubungen werden Stahlrohre aus den Werkstoffen E235 (ST37.4 +N) und E355 (ST52.4 +N) empfohlen.

+ Präzisionsabmessung/Form

+ Innen sauber; (keine Klassifikation)

+ Hochdruck geeignet

+ Ausgezeichnet glatte Oberfläche nach der Rollierbördelung

Empfohlene Edelstahlrohre und Leitungen

Parker empfiehlt den Einsatz von nahtlos gezogenen EO-Präzisionssedelstahlrohr, entsprechend:

DIN EN 10216-5, ASTM A269/A213, ASTM A312.

EO-Präzisionsedelstahlrohr erfüllt und übertrifft diese Normen. Die Toleranzen der Rohraußendurchmesser und Wanddicken sind noch enger um ein sicheres Zusammenspiel mit unseren Verbindungssystemen zu gewährleisten.

Für die Montage von Edelstahlverschraubungen werden EO-Präzisionsedelstahlrohre aus den Werkstoffen 316 Ti und 316L empfohlen.

+ Präzisionsabmessung/Form

+ Hochdruck geeignet

+ Ausgezeichnet glatte Oberfläche nach der Rollierbördelung

Geschweißte Rohre und Leitungen

Rohre und Leitungen, entsprechend den unten aufgeführten Spezifikationen, aber geschweißt und kalt nachgezogen anstelle von nahtlos gezogenen, sind in der Regel geeignet. Die Druckleistung könnte auf Grund der Schweißnahtbereiche verringert sein. Zu dem könnte die Schweißnahtqualität die Qualität der gerollten Bördelungsoberfläche beeinflussen.

Warm gewalzte Rohre

Warm gewalzte Rohre werden aus folgenden Gründen nicht empfohlen:

Warm gewalzte Rohre weisen keine Präzisionsabmessungen auf und können in Bearbeitungsmaschinenwerkzeugen rutschen. Die Rohre weisen innen und außen Zunder auf. Der Zunder im Inneren reduziert den Reinheitsgrad der Flüssigkeit. Beim Bördelungsvorgang verunreinigt der Zunder die Bördelwerkzeuge (hoher Reinigungsaufwand) und verursacht eine schlechte Qualität der Bördelungsoberfläche.

Der erforderliche maximale Arbeitsdruck wird entsprechend DIN oder DNV kalkuliert.

Werkstoffkennwerte

E235+N / St.37.4 (1.0308) nach DIN EN 10305-4						
Zugfestigkeit	min 340 N/mm ²					
Streckgrenze	min 235 N/mm ²					
Schwellfestigkeit	225 N/mm ² 1)					
Bruchdehnung	min. 25%					

E355+N / St.52.4 (1.0580) nach DIN EN 10305-4							
Zugfestigkeit	min 490 N/mm ²						
Streckgrenze	min 355 N/mm ²						
Schwellfestigkeit	265 N/mm ^{2 2)}						
Bruchdehnung	min. 22 %						

316Ti (1.4571) kaltgezogen (CFA) nach DIN EN 10216-5							
Zugfestigkeit	min 500 N/mm ²						
0.2 % Dehngrenze	min 210 N/mm ²						
1 % Dehngrenze	min 245 N/mm ²						
Schwellfestigkeit	220 N/mm ^{2 2)}						
Bruchdehnung	min. 35 %						

316L (1.4404) kaltgezogen (CFA) ³⁾ nach DIN EN 10216-5							
Zugfestigkeit	min 500 N/mm ²						
0.2 % Dehngrenze	min 210 N/mm ²						
1 % Dehngrenze	min 245 N/mm ²						
Bruchdehnung	min. 35 %						

316L (1.4404) nach ASTM A269 / A213							
Zugfestigkeit	min 530 N/mm ²						
Streckgrenze	min 276 N/mm ²						
0.2 % Dehngrenze / 1.6 ⁴⁾	172.5 N/mm ²						

316L (1.4404) nach ASTM A312 / A530								
Zugfestigkeit	min 515 N/mm ²							
Streckgrenze	min 234 N/mm ²							
0.2 % Dehngrenze / 1.6 ⁴⁾	146 N/mm ²							

¹⁾ DIN 2413, 6.331

²⁾ Keine Normvorgabe, Erfahrungswert

³⁾ Kaltverfestigungserhöhung in Anlehnung an 1.4571

⁴⁾ Nenndruck-Berechnung, basierend auf diesen mechanischen Eigenschaften, erfordern eine Zertifizierung gemäß 3.1 -EN 10204, die die mechanischen Eigenschaften bestätigt.

Rohrkalkulation für Industrie- und Mobil-Anwendungen nach DIN Richtlinien

DIN 2413 I, nur für statische Belastung

Kalkulation des Arbeitsdrucks für Stahlrohre mit statischer Beanspruchung bis 120°C. Korrosion - zusätzliche Beanspruchungen wurden zur Berechnung des Druckes nicht berücksichtigt. Rohre mit einem Durchmesser von AD/ID >2 sind mit einer dynamischen Beanspruchung nach DIN 2413 III kalkuliert, aber mit K = Streckfestigkeit.

$$P = \frac{20 * K * s * c}{S * D}$$

P = zulässiger Betriebsdruck [bar]

K = Streckgrenze [N/mm²]

s = Rohrwanddicke [mm]

c = Zuschlag für Wanddickenunterschreitung

= 0,8 für Rohr-AD 4-5

= 0,85 für Rohr-AD 6-8

= 0.9 ab Rohr-AD 10

= 0,9 für alle Edelstahlrohre

S = Sicherheitsfaktor = 1,5

D = Rohraußendurchmesser [mm]

DIN 2413 III, für dynamische Belastung

Kalkulation des Arbeitsdrucks von Stahlrohren mit dynamischer Beanspruchung bis 120°C.

Korrosion - zusätzliche Beanspruchungen wurden zur Berechnung des Druckes nicht berücksichtigt.

$$P = \frac{20 * K * s * c}{S * (D + s * c)}$$

P = zulässiger Betriebsdruck [bar]

K = Schwellfestigkeit [N/mm²]

s = Rohrwanddicke [mm]

c = Zuschlag für Wanddickenunterschreitung

= 0,8 für Rohr-AD 4-5

= 0,85 für Rohr-AD 6-8

= 0,9 für Rohr-AD 10-80

= 0,9 für alle Edelstahlrohre

S = Sicherheitsfaktor / Safety factor = 1,5

D = Rohraußendurchmesser [mm]

Berstdruckkalkulation

Kalkulation statischer Berstdrücke für nahtlose Rohre nach

Faupel-von-Mises. BP =
$$R_{p0.2} * 10\frac{2}{\sqrt{3}} ln \frac{D}{d} * (2 - \frac{R_{p0.2}}{R_m})$$

= Min. statischer Berstdruck [bar]

= Zugfestigkeit [N/mm²]

 $R_{p02} = 0.2$ Dehngrenze, Streckgrenze [N/mm²]

= Rohraußendurchmesser [mm] = Rohrinnendurchmesser [mm]

Rohrkalkulation für Marine und Offshore nach DNV Richtlinien

Kalkulation des Arbeitsdrucks von Stahl und Edelstahlrohren für den Schiffbau nach DNV Teil 4, Kapitel 6, Teil 6.

$$P = \frac{20 * \sigma_t * e \cdot t_0}{D - t_0}$$

Berechnung des Berstdruckes

$$BP = \frac{20^*R_m^*t_n^*a}{D - t_n^*a}$$

= zulässiger Betriebsdruck [bar]

BP = Annähernder Berstdruck [bar]

= zulässige Beanspruchung [N/mm²] kalkuliert vom niedrigeren Wert des:

Edelstahl:

$$\sigma_{\rm t} = \frac{{\rm R}_{\rm m}}{2.7} \ {\rm oder} \ \frac{{\rm K}}{1.0}$$

t₀ = Rohrwandstärke ohne Aufmaße [mm]

$$t_0 = t_n * a - c - b$$

= Nominale Rohrwandstärke [mm]

= Zuschlag für Wanddickenunterschreitung

= 0,8 für Rohr-AD 4-5, 0,85 für Rohr-AD 6-8, 0,9 für Rohr-AD >=10

 $b = \frac{1}{2.5} * \frac{D}{R} * t_0$

= 0,875 für Schedule Pipes

b = 0,1333 * t_0 (bei R/D=3) $\rightarrow t_0 = \frac{t_n * a - c}{1,1333}$

= 0,9 für alle Edelstahlrohre b = Biegeaufmaß

= Korrosionszuschlag, c = 0,3 mm für Hydraulikstahlrohr, c = 0 mm für Edelstahlrohr

= Stärkequotient: Für nahtlose Rohre e = 1

D = Rohr-Außendurchmesser [mm]

R_m= min. Zugfestigkeit [N/mm²]

K = min. Streckgrenze oder min 0,2% Dehngrenze [N/mm²]

Druckabschläge und Temperaturen

Werkstoffbedingte Druckabschläge gegenüber den Katalogangaben, sind bei erhöhten Temperaturen erforderlich. Verschraubungswerkstoff und Dichtungsmaterial müssen entsprechend der Betriebstemperatur ausgewählt werden.

Der DNV kann je nach Anwendung abweichende Druckabschläge vorschreiben.

Moderate	Druckabschläge der zulässigen Betriebstemperaturen in °C														
Werkstoff	-60	-54	-40	-35	-25	+20	+50	+100	+120	+150	+175	+200	+250	+300	+400
Stahl Komponenten	10%			0%			11%	19%							
Stahlrohre	10%					0%			19%		27%				
Edelstahl Komponenten			0	%			5%	15%	23	23% 29%		9%	33%	37%	42%
Edelstahlrohre			0	%			5,5%	11,5%	21,5%		29%		34%		
Dichtungswerkstoff NBR (z. B. Perbunan)															
Dichtungswerkstoff FKM															
Dichtungswerkstoff Polyurethan (P5008)															

Zulässige Betriebstemperatur

Zulässige Umgebungstemperatur bei hydraulischer und pneumatischer Anwendung

Temperatur nicht zulässig

Berechnungsbeispiel:

Temperatur = 200°C

Material = Nichtrostender Stahl

Druckabschlag = 29 %

Druckabschlag Rohre = 21,5 %

PN Rohr 16x2.5/71. DIN2413 III = 362 bar

Formel:

$$PN_{200^{\circ}C} = \frac{400 \text{ bar}}{100\%} \times (100\% - 29\%) = 284 \text{ bar}$$

$$PN_{\text{Rohr }200^{\circ}\text{C}} = \frac{362 \text{ bar}}{100\%} \times (100\% - 21,5\%) = 284 \text{ bar}$$

Strömungsdurchmesser von Rohrleitungen

Bestimmung der Rohre für Hydraulik-Systeme

Die richtige Rohrauswahl und Verschraubungsart ist entscheidend für einen effizienten und störungsfreien Betrieb eines Hydraulik-Systems. Zur Rohrauswahl gehört die Festlegung des richtigen Werkstoffs und der richtigen Abmessung (Außendurchmesser und Wanddicke).

Die richtige Rohrbestimmung für verschiedene Teile eines Hydrauliksystems führt zu wirtschaftlicher und kostengünstiger Ausführung.

Ein zu kleines Rohr verursacht hohe Strömungsgeschwindigkeiten mit vielen nachteiligen Folgen. In Druckleitungen führt es zu hohen Reibungsverlusten und Turbulenzen, wodurch es zu hohen Druckverlusten und Hitzeentwicklung kommt. Hohe Wärme führt zu höherem Verschleiß in bewegten Teilen und zum schnellen Altern von Dichtungen, also zu verkürzter Lebensdauer. Hohe Wärmeentwicklung bedeutet ebenso Energieverschwendung und folglich geringe Wirtschaftlichkeit. Zu große Rohre führen zu hohen Systemkosten. Folglich ist eine optimale Rohrauswahl sehr wichtig. Nachfolgend ist eine einfache Vorgehensweise zur Rohrbestimmung dargestellt.

Bestimmung des erforderlichen Durchflussquerschnitts Nach der Tabelle kann der empfohlene Innendurchmesser für die erforderliche Durchflussmenge des Leitungstyps bestimmt werden. Die Tabelle basiert auf empfohlenen Durchflussgeschwindigkeiten, die im Schiffbau und der Offshorekonstruktion einheitlich sind.

Druckleitung
$$-3 \rightarrow 7.2 \left[\frac{m}{s} \right]$$
Rücklaufleitung $-2 \rightarrow 4.5 \left[\frac{m}{s} \right]$
Saugleitung $-1 \rightarrow 1.8 \left[\frac{m}{s} \right]$

Vermeiden von Durchflussgeschwindigkeiten > 8 m/s! Die entstehenden Kräfte sind hoch und können die Rohrleitungen zerstören.

Wenn eine andere Durchlussgeschwindigkeit gewünscht wird, kann der erforderliche Innendurchmesser nach folgender Formel berechnet werden.

$$Rohr - I.D. [mm] = 4,61 \times \sqrt{ \begin{array}{c} Durchfluss- \\ menge \end{array} \left[\begin{array}{c} \underline{Itr.} \\ \underline{min} \end{array} \right] }$$

$$\frac{Durchflussge-}{schwindigkeit} \left[\begin{array}{c} \underline{m} \\ \underline{s} \end{array} \right]$$

Bestimmung der erforderlichen Wanddicke

Zur Bestimmung der empfohlenen Rohrwanddicke für den gewünschten Arbeitsdruck und Rohrinnendurchmesser Tabellen im Rohrkapitel beachten. Dazu den max. Arbeitsdruck auswählen, der gleich oder höher ist als der gewünschte Arbeitsdruck.

Durchflusseigenschaften

Hydraulikanlagen werden meist nur mit einer durch Erfahrungen vorgegebenen Strömungsgeschwindigkeit ausgelegt. Die Druckverluste in den Leitungen werden nicht berücksichtigt oder später in den Probeläufen der Anlage gemessen. Da die Druckverluste überproportional zu den Strömungswiderständen ansteigen, ist es für die optimale Auslegung einer Anlage wichtig, sie schon bei der Planung zu berücksichtigen. Die Berechnung ist nicht so schwierig, wie häufig angenommen wird. Dieser Beitrag soll eine Anleitung dazu geben. Außerdem werden Hinweise dazu gegeben, wie zu hohe Druckverluste vermieden werden können. Denn: Druckverluste bedeuten Leistungsverluste, das Öl erwärmt sich sehr stark, es treten Geräusche auf und evtl. Kavitation in Saugleitungen.

Medium

Alle Angaben zu den Durchflusswiderständen und dem Verhalten der Strömungen beziehen sich ausschließlich auf Flüssigkeiten. Für gasförmige Medien muss zusätzlich noch die variable Dichte des Gases berücksichtigt werden.

Einheiten

$$c = \text{Str\"{o}}$$
mungsgeschwindigkeit $\left\lceil \frac{m}{s} \right\rceil$

d = Rohrinnendurchmesser [m]

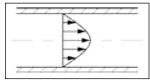
L = Rohrlänge [m]

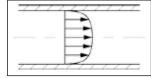
p = Druck [Pa], 1 bar = 100000 Pa

$$\dot{V}$$
 = Volumenstrom $\left[\frac{m^3}{s}\right]$, 1 $\frac{m^3}{s}$ = 60000 $\frac{l}{min}$

 $\lambda = Rohrreibungszahl$

 $\upsilon(T)$ =Kinematische Viskosität des Mediums in Abhängigkeit zur Temperatur $\left[\frac{m^2}{s}\right]$


$$\rho(T)$$
 = Dichte des Mediums in
Abhängigkeit zur Temperatur $\frac{\text{kg}}{\text{m}^3}$


 ζ = Einzelwiderstandsbeiwert

Es wurden nur Grundeinheiten verwendet. Das hat den Vorteil, dass die Formeln keine Korrekturfaktoren enthalten. Es besteht keine Verwechslungsgefahr, dass Werte in der falschen Einheit eingesetzt werden. Wenn Angaben in anderen Einheiten vorliegen, z. B. wird der Volumenstrom häufig in L/min angegeben, ist es ratsam, sie vor Beginn der Rechnung in die Grundeinheiten umzusetzen.

Druckverluste in Rohrleitungen

Um Druckverluste in Rohrleitungen zu berechnen, muss zuerst abgeschätzt werden, ob laminare oder turbulente Strömung vorhanden ist. Laminare Strömung ist gleichförmig und ohne Verwirbelungen. Bei turbulenter Strömung steigen die Verluste sprunghaft an.

Strömungsprofil bei laminarer Strömung

Strömungsprofil bei turbulenter Strömung

Die Art der Strömung wird durch die Reynoldszahl gekennzeichnet. Bei einer Reynoldszahl größer als 2320 schlägt die Strömung ins Turbulente um. Die Reynoldszahl wird berechnet aus der Formel:

$$Re = \frac{c \cdot d}{v(T)}$$

Die Reynoldszahl ist eine dimensionslose Zahl. Die kritische Strömungsgeschwindigkeit, bei der die Strömung umschlagen kann, wird danach errechnet aus:

$$c_{cr} = 2320 \cdot \frac{v(T)}{d} \left[\frac{m}{s} \right]$$

Bei vorgegebenem Volumenstrom kann die Strömungsgeschwindigkeit errechnet werden aus:

$$c = \frac{\dot{V} \cdot 4}{d^2 \cdot \pi} \left[\frac{m}{s} \right]$$

Anschließend kann die Rohrreibungszahl λ errechnet werden. Die Rohrreibungszahl λ ist eine Funktion der Reynoldszahl und ist außerdem von der Rauhigkeit der Rohre abhängig. Da in der Hydraulik im allgemeinen von hydraulisch glatten Rohren ausgegangen werden kann, wird die Rohrreibungszahl λ nach folgender Formel errechnet:

laminare Strömung, (Re
$$<$$
 2320): $\lambda = \frac{64}{Re}$

turbulente Strömung, (Re > 2320):
$$\lambda = \frac{0.3164}{\sqrt[4]{\text{Re}}}$$

Abschließend, wenn alle Faktoren bekannt sind, kann der Druckverlust in einer bestimmten Rohrleitung berechnet werden nach der Formel:

$$\Delta p = \lambda \cdot \frac{L}{d} \cdot \frac{\rho(T) \cdot c^2}{2} [Pa]$$

Berechnung von Einzelwiderständen

In einer Hydraulikanlage gibt es nicht nur Rohrleitungen, sondern auch Ventile, Rohrverschraubungen, Rohrbögen usw., die Strömungsverluste verursachen. Diese Einzelverluste sind oft sehr viel größer als die Rohrverluste und errechnen sich nach folgender Formel:

$$\Delta p = \zeta \cdot \rho(T) \cdot \frac{c^2}{2} [Pa]$$

Nahtlose EO-Rohre aus Stahl | Material E235+N / St. 37.4 (1.0308)

Nach DIN EN 10305-4

- 1. DIN 2413 I: Rohre mit einem Durchmesserverhältnis von AD/ID>2 wurden nach DIN 2413 III berechnet, jedoch wurde beim Festigkeitskennwert K die Streckgrenze eingesetzt.
- 2. Ermittelt auf Parker Laborprüfständen. () = Berstdruckkalkulation (B.D.) nach Faupel-von-Mises

Material E235+N / St.37.4 (1.0308)						Berechnu	ingsdruck		
Obert Phosphatiert und geölt	fläche Cr(VI)- frei zeichen	d _a Außen-Ø (mm)	Außen-Ø Toleranz (mm)	s Wanddicke (mm)	d _i Innen-Ø (mm)	1 DIN 2413 I ruhend PN bar	DIN 2413 III schwellend PN bar	2 Berstdruck bar	Gewicht kg/m
R04X0.5	R04X0.5CF	04		0,50	3,0	313	273	1160	0,047
	R04X0.75CF	04	±0,08	0,75	2,5	470	391	1820	0,063
R04X1	R04X1CF	04		1,00	2,0	627	500	2700	0,074
	R05X1CF	05	±0,08	1,00	3,0	501	414	2120	0,099
	R06X0.75CF	06		0,75	4,5	333	288	1150	0,103
R06X1	R06X1CF	06		1,00	4,0	444	372	1650	0,123
R06X1.5	R06X1.5CF	06	±0,08	1,50	3,0	666	526	2550	0,166
	R06X2CF	06		2,00	2,0	692	662	>3500	0,197
R06X2.25	R06X2.25CF	06		2,25	1,5	757	725	>3500	0,208
R08X1	R08X1CF	08		1,00	6,0	333	288	1175	0,173
R08X1.5	R08X1.5CF	08 08	±0,08	1,50	5,0	499	412 526	1925 2500	0,240
R08X2	R08X2CF R08X2.5CF	08		2,00 2,50	4,0 3,0	666 658	630	2650	0,296 0,339
R10X1	R10X1CF	10		1,00	8,0	282	248	900	0,339
R10X1.5	R10X1.5CF	10		1,50	7,0	423	357	1450	0,314
R10X2	R10X2CF	10	±0,08	2,00	6,0	564	458	2025	0,395
R10X2.5	R10X2.5CF	10	20,00	2,50	5,0	705	551	2675	0.462
	R10X3CF	10		3,00	4,0	666	638	>3500	0,518
R12X1	R12X1CF	12		1,00	10,0	235	209	750	0,271
R12X1.5	R12X1.5CF	12		1,50	9,0	353	303	1150	0,388
R12X2	R12X2CF	12	±0,08	2,00	8,0	470	391	1600	0,493
	R12X2.5CF	12	±0,06	2,50	7,0	588	474	2025	0,586
	R12X3CF	12		3,00	6,0	705	551	2600	0,666
	R12X3.5CF	12		3,50	5,0	651	624	(3109)	0,734
	R14X1.5CF	14		1,50	11,0	302	264	975	0,462
R14X2	R14X2CF	14	±0,08	2,00	10,0	403	342	1325	0,592
R14X2.5	R14X2.5CF	14	-,	2,50	9,0	504	415	1650	0,709
DAEVA	R14X3CF	14 15		3,00	8,0	604	485	2200	0,814
R15X1 R15X1.5	R15X1CF R15X1.5CF	15	±0,08	1,00 1,50	13,0 12,0	188 282	170 248	575 950	0,345 0,499
R15X1.5	R15X1.5CF	15	±0,00	2,00	11,0	376	321	1275	0,499
R16X1.5	R16X1.5CF	16		1,50	13,0	264	233	850	0,536
R16X2	R16X2CF	16		2,00	12,0	353	303	1175	0,691
R16X2.5	R16X2.5CF	16	±0,08	2,50	11,0	441	370	1500	0,832
R16X3	R16X3CF	16		3,00	10,0	529	433	1850	0,962
R18X1	R18X1CF	18		1,00	16,0	157	143	450	0,419
R18X1.5	R18X1.5CF	18		1,50	15,0	235	209	700	0,610
R18X2	R18X2CF	18	±0,08	2,00	14,0	313	273	975	0,789
R18X2.5	R18X2.5CF	18		2,50	13,0	392	333	1300	0,956
	R18X3CF	18		3,00	12,0	470	391	1575	1,111

Oberflächenschutz:

- Rohre mit Innendurchmesser 1,5–5 mm: außen und innen geölt.
- Rohre ab 6 mm Innendurchmesser: außen und innen phosphatiert und geölt.
- Cr(VI)-frei:

Diese Abmessungen sind außen Dickschicht passiviert (Schichtdicke 8–12 $\mu m),$ innen geölt.

KRAUSE+KÄHLER Hydraulikkompetenz.de +49 (0) 451 - 87 97 740

Nahtlose EO-Rohre aus Stahl (Fortsetzung) | Material E235+N / St. 37.4 (1.0308)

Nach DIN EN 10305-4

- DIN 2413 I: Rohre mit einem Durchmesserverhältnis von AD/ID>2 wurden nach DIN 2413 III berechnet, jedoch wurde beim Festigkeitskennwert K die Streckgrenze eingesetzt.
- Ermittelt auf Parker Laborprüfständen.

Material E235+N / St.37.4 (1.0308)						Berechnu	ngsdruck		
Oberf		da	Außen-Ø	s	d_{i}			2	Gewicht
Phosphatiert	Cr(VI)-	Außen-Ø	Toleranz	Wanddicke	Innen-Ø	1 DIN 2413 I	DIN 2413 III	Berstdruck	kg/m
und geölt	frei	(mm)	(mm)	(mm)	(mm)	ruhend	schwellend	bar	
						PN bar	PN bar		
Bestellz									
D001/0	R20X1.5CF	20		1,50	17,0	212	190	675	0,684
R20X2	R20X2CF	20		2,00	16,0	282	248	900	0,888
R20X2.5	R20X2.5CF	20	±0,08	2,50	15,0	353	303	1100	1,079
R20X3	R20X3CF	20	.,	3,00	14,0	423	357	1400	1,258
	R20X3.5CF	20		3,50	13,0	494	408	1650	1,424
	R20X4CF	20		4,00	12,0	564	458	2000	1,578
R22X1.5	R22X1.5CF	22		1,50	19,0	192	173	550	0,758
R22X2	R22X2CF	22	±0,08	2,00	18,0	256	227	775	0,986
R22X2.5	R22X2.5CF	22	-,	2,50	17,0	320	278	1025	1,202
D051/0	R22X3CF	22		3,00	16,0	385	328	1175	1,406
R25X2	R25X2CF	25		2,00	21,0	226	201	725	1,134
R25X2.5	R25X2.5CF	25	0.00	2,50	20,0	282	248	850	1,387
R25X3	R25X3CF	25	±0,08	3,00	19,0	338	292	1025	1,628
R25X4	R25X4CF	25		4,00	17,0	451	378	1500	2,072
	R25X4.5CF	25		4,50	16,0	508	418	1625	2,275
R28X1.5	R28X1.5CF	28		1,50	25,0	151	138	425	0,980
R28X2	R28X2CF	28	±0.08	2,00	24,0	201	181	600	1,282
R28X2.5	R28X2.5CF	28	.,	2,50	23,0	252	223	750	1,572
R28X3	R28X3CF	28		3,00	22,0	302	264	900	1,850
	R30X2CF	30		2,00	26,0	188	170	575	1,381
R30X2.5	R30X2.5CF	30		2,50	25,0	235	209	725	1,695
R30X3	R30X3CF	30	±0,08	3,00	24,0	282	248	850	1,998
R30X4	R30X4CF	30		4,00	22,0	376	321	1175	2,565
R30X5	R30X5CF	30		5,00	20,0	470	391	1600	3,083
R35X2	R35X2CF	35		2,00	31,0	161	147	450	1,628
R35X2.5	R35X2.5CF	35	±0,15	2,50	30,0	201	181	600	2,004
R35X3	R35X3CF	35		3,00	29,0	242	215	700	2,367
	R35X4CF	35		4,00	27,0	322	280	960	3,058
Danya	R38X2.5CF	38		2,50	33,0	186	168	550 675	2,189
R38X3	R38X3CF	38		3,00	32,0	223	199	675 900	2,589
R38X4	R38X4CF	38 38	±0,15	4,00	30,0	297	260		3,354
R38X5	R38X5CF			5,00	28,0	371	318	1150	4,069
	R38X6CF	38		6,00	26,0	445	373	1425	4,735
R42X2	R38X7CF R42X2CF	38 42		7,00	24,0	519 134	427	1700	5,352
			.0.20	2,00	38,0	_	123	375	1,973
R42X3	R42X3CF	42 42	±0,20	3,00	36,0	201 269	181 237	575 850	2,885
R42X4	R42X4CF	42		4,00	34,0	209	231	୪၁୦	3,749

Nahtlose EO-Rohre aus Stahl | Material E355+N / St. 52.4 (1.0580)

Nach DIN EN 10305-4

- DIN 2413 I: Rohre mit einem Durchmesserverhältnis von AD/ID>2 wurden nach DIN 2413 III berechnet, jedoch wurde beim Festigkeitskennwert K die Streckgrenze eingesetzt.
- 2. Berstdruckkalkulation (B.D.) nach Faupel-von-Mises

Material E355+N / St.52.4 (1.0580)						Berechnu	ingsdruck	_	
Phosphatiert und geölt	erflächen Cr(VI)- frei ellzeichen	d _a Außen-Ø (mm)	Außen-Ø Toleranz (mm)	s Wanddicke (mm)	d _i Innen-Ø (mm)	1 DIN 2413 I ruhend PN bar	DIN 2413 III schwellend PN bar	2 Berstdruck bar	Gewicht kg/m
	R10X2ST52CF	10	±0.08	2.00	6.0	852	539	2671	0.395
	R12X1.5ST52CF R12X2ST52CF	12 12	±0,08	1,50 2,00	9,0 8,0	533 710	357 461	1504 2120	0,388 0,493
	R15X1.5ST52CF R15X2ST52CF	15 15	±0,08	1,50 2,00	12,0 11,0	426 568	292 379	1167 1622	0,499 0,641
R16X2ST52	R16X1.5ST52CF R16X2ST52CF	16 16	±0,08	1,50 2,00	13,0 12,0	399 533	275 357	1086 1504	0,536 0,691
	R16X2.5ST52CF R18X1.5ST52CF R18X2ST52CF	16 18 18	±0,08	2,50 1,50 2,00	11,0 15,0 14,0	666 355 473	436 247 321	1959 953 1314	0,832 0,610 0,789
	R20X2ST52CF R20X2.5ST52CF	20 20	±0,08	2,00 2,50	16,0 15,0	426 533	292 357	1167 1504	0,888 1,079
	R20X3ST52CF R22X1.5ST52CF R22X2ST52CF	20 22 22	±0,08	3,00 1,50 2,00	14,0 19,0 18,0	639 290 387	420 204 267	1865 767 1049	1,258 0,758 0,986
R25X3ST52	R25X2.5ST52CF R25X3ST52CF R25X4ST52CF	25 25 25 25	±0,08	2,50 3,00 4,00	20,0 19,0 17.0	426 511 682	292 344 445	1167 1435 2016	1,387 1,628 2,072
-	R28X2ST52CF	28	±0,08	2,00	24,0	304	213	806	1.282
R30X3ST52	R30X3ST52CF R30X4ST52CF R30X5ST52CF	30 30 30	±0,08	3,00 4,00 5,00	24,0 22,0 20,0	426 568 710	292 379 461	1167 1622 2120	1,998 2,565 3,083
	R35X3ST52CF	35	±0,15	3,00	29,0	365	253	983	2,367
R38X4ST52	R38X3ST52CF R38X4ST52CF R38X5ST52CF R38X6ST52CF	38 38 38 38	±0,15	3,00 4,00 5,00 6,00	32,0 30,0 28,0 26,0	336 448 561 673	234 306 374 440	899 1236 1597 1984	2,589 3,354 4,069 4,735
	R42X3ST52CF R42X4ST52CF R42X5ST52CF	42 42 42 42	±0,20	3,00 4,00 5,00	36,0 34,0 32,0	304 406 507	213 279 342	806 1105 1422	2,885 3,748 4,562

Oberflächenschutz:

- Rohre mit Innendurchmesser 1,5–5 mm: außen und innen geölt.
- Rohre ab 6 mm Innendurchmesser: außen und innen phosphatiert und geölt.

• Cr(VI)-frei:

Diese Abmessungen sind außen Dickschicht passiviert (Schichtdicke 8–12 μ m), innen geölt.

KRAUSE+KÄHLER Hydraulikkompetenz.de +49 (0) 451 - 87 97 740

Nahtlose EO-Rohre aus Edelstahl | Material 316Ti (1.4571)

Nach DIN EN 10216-5, DIN EN 10305-1

- DIN 2413 I: Rohre mit einem Durchmesserverhältnis von AD/ID>2 wurden nach DIN 2413 III berechnet, jedoch wurde beim Festigkeitskennwert K die Streckgrenze eingesetzt.
- Ermittelt auf Parker Laborprüfständen. () = Berstdruckkalkulation (B.D.) nach Faupel-von-Mises

Material 316Ti (1.4571)					Berechnu	ngsdruck		
Oberfläche blankgeglüht Bestellzeichen	d _a Außen-Ø (mm)	Außen-Ø Toleranz (mm)	s Wanddicke (mm)	d _i Innen-Ø (mm)	1 DIN 2413 I ruhend PN bar	DIN 2413 III schwellend PN bar	2 Berstdruck bar	Gewicht kg/m
R04X171	04	±0,08	1,0	2,0	735	539	(2961)	0,075
R06X171	06	0.00	1,0	4,0	490	383	1850	0,125
R06X1.571	06	±0,08	1,5	3,0	735	539	2900	0,169
R08X171	08	0.00	1,0	6,0	368	297	1300	0,175
R08X1.571	08	±0,08	1,5	5,0	551	424	2050	0,244
R10X171	10		1,0	8,0	294	242	950	0,225
R10X1.571	10	±0,08	1,5	7,0	441	349	1750	0,319
R10X271	10	-	2,0	6,0	588	447	2400	0,401
R12X171	12		1,0	10,0	245	205	850	0,275
R12X1.571	12	±0,08	1,5	9,0	368	297	1400	0,394
R12X271	12		2,0	8,0	490	383	1900	0,501
R14X1.571	14		1,5	11,0	315	258	1200	0,469
R14X271	14	±0,08	2,0	10,0	420	334	1550	0,601
R14X2.571	14		2,5	9,0	525	406	2100	0,720
R15X171	15		1,0	13,0	196	166	675	0,351
R15X1.571	15	±0,08	1,5	12,0	294	242	1100	0,507
R15X271	15		2,0	11,0	392	314	1400	0,651
R16X1.571	16		1,5	13,0	276	228	950	0,545
R16X271	16	. 0. 00	2,0	12,0	368	297	1300	0,701
R16X2.571	16	±0,08	2,5	11,0	459	362	1850	0,845
R16X371	16		3,0	10,0	551	424	2400	0,977
R18X1.571	18	±0,08	1,5	15,0	245	205	800	0,620
R18X271	18	±0,06	2,0	14,0	327	267	1150	0,801
R20X271	20		2,0	16,0	294	242	1050	0,901
R20X2.571	20	±0,08	2,5	15,0	368	297	1400	1,095
R20X371	20		3,0	14,0	441	349	1800	1,277
R22X1.571	22	±0,08	1,5	19,0	200	170	650	0,770
R22X271	22		2,0	18,0	267	222	900	1,002
R25X271	25		2,0	21,0	235	197	763	1,152
R25X2.571	25	±0,08	2,5	20,0	294	242	1050	1,408
R25X371	25		3,0	19,0	353	286	1275	1,653
R28X1.571	28		1,5	25,0	158	135	550	0,995
R28X271	28	±0,08	2,0	24,0	210	177	700	1,302
R28X2.571	28		2,5	23,0	263	218	(840)	1,596
R30X2.571	30		2,5	25,0	245	205	850	1,722
R30X371	30	±0,08	3,0	24,0	294	242	1150	2,028
R30X471	30		4,0	22,0	392	314	1500	2,605
R35X271	35		2,0	31,0	168	143	550	1,653
R35X2.571	35	±0,15	2,5	30,0	210	177	(659)	2,035
R35X371	35		3,0	29,0	252	210	(803)	2,404
R38X2.571	38	±0,15	2,5	33,0	193	164	628	2,222
R38X471	38	,	4,0	30,0	309	254	1150	3,405
R42X271	42 42	±0,20	2,0	38,0	140	121	475	2,003
R42X371	42		3,0	36,0	210	177	750	2,930

KRAUSE+KÄHLER

Nahtlose EO-Rohre aus Edelstahl | Material 316L (1.4404)

Nach ASTM A269/A213, DIN EN 10305-4

- 1. DIN 2413 I statischer Druck (PN) geeignet für Rohre inklusive Herstellungstoleranzen
- 2. Berstdruckkalkulation (B.D.) nach Faupel-von-Mises

Material 316L (1.4404)						Berechn	1 ungsdruck	2 Berstdruck bar	Gewicht kg/m
,		d _a	Außen-Ø Toleranz (mm)	S	d _i Innen-Ø (mm)		ı		
Oberfläche		Außen-Ø (mm)		Wanddicke (mm)		DIN 2413 I	DIN 2413 III		
gebeizt	gebeizt blankgeglüht					ruhend	schwellend PN bar		
Beste	ellzeichen					PN bar	FINDAI		
R04X1-316BA		04	±0,08	1,0	2,0	735	539	2961	0,075
	R06X1-316BA	06	±0,08	1,0	4,0	490	383	1732	0,125
	R06X1.5-316BA	06	±0,06	1,5	3,0	735	539	2961	0,169
	R08X1-316BA	08	±0,08	1,0	6,0	368	297	1229	0,175
	R10X1-316BA	10		1,0	8,0	294	242	953	0,225
	R10X1.5-316BA	10	±0,08	1,5	7,0	441	349	1524	0,319
	R10X2-316BA	10		2,0	6,0	588	447	2182	0,401
	R12X1-316BA	12		1,0	10,0	245	205	779	0,275
	R12X1.5-316BA	12	±0,08	1,5	9,0	368	297	1229	0,394
	R12X2-316BA	12		2,0	8,0	490	383	1732	0,501
	R15X1.5-316BA	15	±0,08	1,5	12,0	294	242	953	0,507
R16X2-316		16	±0,08	2,0	12,0	368	297	1229	0,701
R16X2.5-316		16	10,00	2,5	11,0	459	362	1601	0,845
R18X1.5-316		18	±0.08	1,5	15,0	245	205	779	0,620
R18X2-316		18	10,00	2,0	14,0	327	267	1074	0,801
R20X2-316		20	±0,08	2,0	16,0	294	242	953	0,901
R20X2.5-316		20	·	2,5	15,0	368	297	1229	1,096
R22X2-316		22	±0,08	2,0	18,0	267	222	857	1,002
R25X2-316		25		2,0	21,0	235	197	745	1,152
R25X2.5-316		25	±0,08	2,5	20,0	294	242	953	1,409
R25X3-316		25		3,0	19,0	353	286	1172	1,653
R28X2-316		28	±0,08	2,0	24,0	210	177	659	1,302
R30X2.5-316		30	±0,08	2,5	25,0	245	205	779	1,722
R30X3-316		30	,	3,0	24,0	294	242	953	2,028
R35X3-316		35	±0,15	3,0	29,0	252	210	803	2,404
R38X3-316		38		3,0	32,0	232	195	734	2,629
R38X4-316		38	±0,15	4,0 5,0	30,0	309	254	1010	3,405
R38X5-316			38 '		28,0	387	311	1305	4,132
R38X6-316		38		6,0	26,0	464	365	1621	4,808
R42X3-316		42	±0,20	3,0	36,0	210	177	659	2,930

Weitere Abmessungen auf Anfrage!

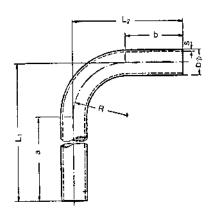
S12

KRAUSE+KÄHLER Hydraulikkompetenz.de +49 (0) 451 - 87 97 740

Nahtlose EO-Rohre aus Edelstahl | Material 316L (1.4404)

Nach DIN EN 10216-5, DIN EN 10305-1

- DIN 2413 I: Rohre mit einem Durchmesserverhältnis von AD/ID>2 wurden nach DIN 2413 III berechnet, jedoch wurde beim Festigkeitskennwert K die Streckgrenze eingesetzt.
- Berstdruckkalkulation (B.D.) nach Faupel-von-Mises


Material 316 L (1.4404) Oberfläche	d _a Außen-Ø (mm)		s Wanddicke		d Innen-Ø	Berechnu	l ngsdruck DIN 2413 III	2 Berstdruck	Gewicht
blankgeglüht				mm	(mm)	ruhend PN bar	schwellend PN bar	bar	kg/m
Bestellzeichen	Zoll	mm	Zoll						
R1/8X0.028TP316/L	1/8	3,18	0,028	0,71	1,76	659	492	2538	0,044
R3/16X0.035TP316/L	3/16	4,76	0,035	0,89	2,98	549	422	1996	0,086
R1/4X0.035TP316/L			0,035	0,89	4,57	412	328	1403	0,122
R1/4X0.049TP316/L	1/4	6,35	0,049	1,24	3,87	576	440	2126	0,159
R1/4X0.065TP316/L			0,065	1,65	3,05	619	556	3135	0,194
R3/8X0.035TP316/L			0,035	0,89	7,75	274	227	883	0,193
R3/8X0.049TP316/L	3/8	9,53	0,049	1,24	7,05	384	309	1294	0,257
R3/8X0.065TP316/L			0,065	1,65	6,23	510	396	1818	0,326
R1/2X0.035TP316/L			0,035	0,89	10,92	206	174	644	0,263
R1/2X0.049TP316/L	1/2	12,70	0,049	1,24	10,22	288	238	932	0,356
R1/2X0.065TP316/L	1/2		0,065	1,65	9,40	382	307	1286	0,457
R1/2X0.083TP316/L			0,083	2,11	8,48	488	381	1724	0,560
R5/8X0.049TP316/L	5/8	15,88	0,049	1,24	13,40	230	193	729	0,455
R5/8X0.065TP316/L	3/0	15,66	0,065	1,65	12,58	306	251	996	0,588
R3/4X0.049TP316/L			0,049	1,24	16,57	192	163	598	0,553
R3/4X0.065TP316/L			0,065	1,65	15,75	255	212	813	0,719
R3/4X0.083TP316/L	3/4	19,05	0,083	2,11	14,83	325	266	1069	0,895
R3/4X0.095TP316/L			0,095	2,41	14,23	372	300	1248	1,004
R3/4X0.109TP316/L			0,109	2,77	13,51	427	339	1467	1,129
R1X0.065TP316/L			0,065	1,65	22,10	191	162	595	0,981
R1X0.083TP316/L	1	25,40	0,083	2,11	21,18	244	204	775	1,231
R1X0.095TP316/L	1		0,095	2,41	20,58	279	231	900	1,387
R1X0.126TP316/L			0,126	3,20	19,00	370	299	1240	1,779

Nahtlose EO-Rohrbogen 90° Werkstoff E235N (St. 37.4) und 1.4571

für geringe Druckverluste

Bestellzeichen		Rohr		Wand-	Rohr	Biege-					
Cr(VI)-frei	1.4571	A.D.	Toleranz	dicke	I.D.	radius	Schenkellänge		Länge		Gewicht
		D	±	S	mm	R	а	b	L1	L2	kg/Stück
RB16X2CF	RB16X271	16	0.08	2.0	12	30	200	40	230	70	0.198
RB18X1.5CF	RB18X1.571	18	0.08	1.5	15	36	200	35	236	71	0.178
RB20X2CF		20	0.08	2.0	16	36	200	45	236	81	0.268
RB20X2.5CF	RB20X2.571	20	0.08	2.5	15	36	200	45	236	81	0.326
RB22X1.5CF		22	0.08	1.5	19	38	200	40	238	78	0.227
RB22X2CF	RB22X271	22	0.08	2.0	18	38	200	40	238	78	0.296
RB25X2CF		25	0.08	2.0	21	44	200	50	244	94	0.362
RB25X2.5CF	RB25X2.571	25	0.08	2.5	20	44	200	50	244	94	0.442
RB25X3CF		25	0.08	3.0	19	44	200	50	244	94	0.519
RB28X1.5CF		28	0.08	1.5	25	48	200	50	248	98	0.319
RB28X2CF	RB28X271	28	0.08	2.0	24	48	200	50	248	98	0.417
RB28X3CF		28	0.08	3.0	22	48	200	50	248	98	0.601
RB30X2.5CF		30	0.08	2.5	25	50	200	60	250	110	0.575
RB30X3CF	RB30X371	30	0.08	3.0	24	50	200	60	250	110	0.677
RB30X4CF		30	0.08	4.0	22	50	200	60	250	110	0.869
RB35X2CF	RB35X271	35	0.15	2.0	31	60	200	65	260	125	0.586
RB35X3CF		35	0.15	3.0	29	60	200	65	260	125	0.852
RB38X2.5CF		38	0.15	2.5	33	65	200	75	265	140	0.827
RB38X3CF		38	0.15	3.0	32	65	200	75	265	140	0.979
RB38X4CF	RB38X471	38	0.15	4.0	30	65	200	75	265	140	1.268
RB38X5CF		38	0.15	5.0	28	65	200	75	265	140	1.538
RB42X2CF	RB42X271	42	0.20	2.0	38	80	200	85	280	165	0.809
RB42X3CF		42	0.20	3.0	36	80	200	85	280	165	1.183
RB50X6*		50	0.20	6.0	38	180	150	150	330	330	3.496
RB65X8*		65	0.30	8.0	49	180	160	160	330	330	6.294

Toleranzen für die Schenkellängen: ±2,5 mm

Bei Rohrbögen ist gegenüber geraden Rohren gleicher Wanddicke die höhere Beanspruchung auf der Bogeninnenseite und die Minderung der Schwellfestigkeit durch die Unrundheit zu berücksichtigen. Einzelheiten siehe DIN 2413 III Abschnitt 4.7.

Bei nachträglichem Ablängen des Rohrbogens kann eine Nachkalibrierung im Anschlussbereich des Rohrbogens erforderlich sein.

Rohrbogen E235N (St. 37.4) sind phosphatiert und geölt. (Gelb verzinkt auf Anfrage.)

*phosphatiert und geölt

