

Radialkolben motor Typ MRD, MRDE, MRV, MRVE

Katalog HY29- 0502/DE September 2007

Katalog HY02-8001/DE **Inhaltsverzeichnis**

INHALT	SEITE	
INHALTSVERZEICHNIS	2	
ALLGEMEINE MERKMALE	3	
FUNKTIONSBESCHREIBUNG	4-6	
TECHNISCHE DATEN	7	
AUSWAHL DRUCKFLÜSSIGKEIT	8	
SPÜLVERFAHREN	9	
VENTILSTEUERUNG	10	
KENNLINIE MOTORTYP MRD 300	11	
KENNLINIE MOTORTYP MRDE 330	12	
KENNLINIE MOTORTYP MRD 450	13	
KENNLINIE MOTORTYP MRV 450	14	
KENNLINIE MOTORTYP MRDE 500	15	
KENNLINIE MOTORTYP MRD 700 UND MRV 700	16	
KENNLINIE MOTORTYP MRDE 800 UND MRVE 800	17	
KENNLINIE MOTORTYP MRD 1100 UND MRV 1100	18	
KENNLINIE MOTORTYP MRDE 1400 UND MRVE 1400	19	
KENNLINIE MOTORTYP MRD 1800 UND MRV 1800	20	
KENNLINIE MOTORTYP MRDE 2100 UND MRVE 2100	21	
KENNLINIE MOTORTYP MRD 2800 UND MRV 2800	22	
KENNLINIE MOTORTYP MRDE 3100 UND MRVE 3100	23	
KENNLINIE MOTORTYP MRD 4500 UND MRV 4500	24	
KENNLINIE MOTORTYP MRDE 5400 UND MRVE 5400	25	
KENNLINIE MOTORTYP MRD 7000 UND MRV 7000	26	
KENNLINIE MOTORTYP MRDE 8200 UND MRVE 8200	27	
LEBENSDAUER WÄLZLAGER	28	
ABMESSUNGEN MOTOR MRV 450	29	
ABMESSUNGEN MOTOR MRD, MRDE, MRV, MRVE	30-31	
ABMESSUNGEN WELLENENDEN	32-33	
KOMPONENTEN ZUR DREHZAHLSTEUERUNG	34-35	
ELEKTRONISCHER VOLUMENSTROMREGLER RCE	36-38	
ELEKTRONISCHER MESSWANDLER VOLUMENSTROM	39	

ELEKTRONISCHER DRUCKREGLER RPC

KUPPLUNGEN - ADAPTER MIT PASSFEDER

BREMSE - ABMESSUNGEN - TECHNISCHE DATEN

VERTRIEBS- UND SERVICEBÜROS WELTWEIT

ROHRVERBINDUNGSFLANSCHE

INSTALLATIONSHINWEISE

BESTELLSCHLÜSSEL

40-41

44-45

42

43

46

47

48

AUSFÜHRUNG Radialkolbenmotor mit zweifacher Verdrängung MRD, MRDE und variabler

Verdrängung MRV, MRVE

MRD, MRDE, MRV, MRVE **TYP**

EINBAU Fronteinbau mit Flansch

ROHRANSCHLUSS Rohrverbindungsflansch (siehe Seite 42)

EINBAUPOSITION Jede (Installationshinweise Seite 46 beachten)

LEBENSDAUER WÄLZLAGER Siehe Seite 28

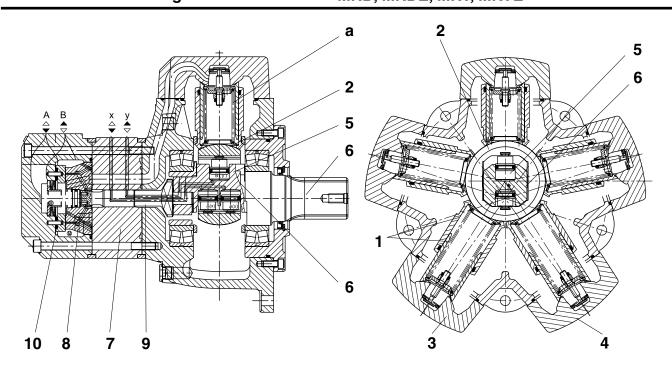
DREHRICHTUNG Im Uhrzeigersinn, entgegen Uhrzeigersinn - umkehrbar

DRUCKFLÜSSIGKEIT HLP Mineralöle nach DIN 51 524 Teil 2; Typ HFB, HFC und biologisch abbaubare Flüssig-

FPM Wellendichtungen mit phosphathaltigem Säureester (HFD) erforderlich

TEMPERATURBEREICH DRUCKFLÜSSIGKEIT

- 30° bis + 80° °C


VISKOSITÄTSBEREICH 1)

18 - 1000 mm²/s: empfohlener Betriebsbereich 30-50 (siehe Auswahl Druckflüssigkeit S. 8)

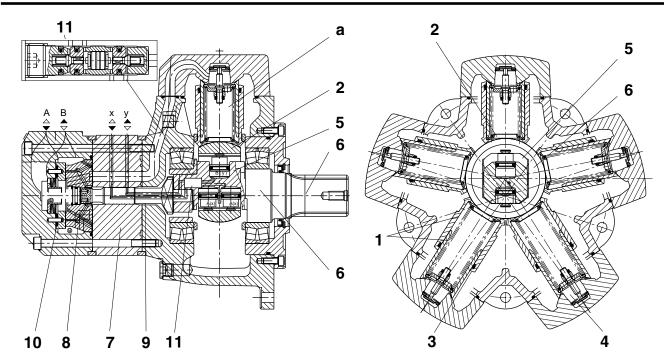
REINHEIT DER DRUCKFLÜSSIGKEIT Höchst zulässige Verunreinigung der Drucklfüssigkeit NAS 1638, Klasse 9. Wir empfehlen daher einen Filter mit einer Rückhalterate von ß10 > 75 zu verwenden. Zur Gewährleistung einer langen Lebesdauer empfehlen wir Klasse 8 nach NAS 1638. Diese kann mit einem Filter mit einer Mindestrückhalterate von ß5 >100 erzielt werden.

1) Weitere Viskositätswerte können Sie bei PARKER HANNIFIN - CALZONI DIVISION erfragen.

MRD-MRDE FUNKTIONSBESCHREIBUNG

Das hervorragende Betriebsverhalten dieses Motors ist das Ergebnis einer eigenständigen Entwicklung und einer patentierten Konstruktion. Die Kraftübertragung auf die Antriebswelle (2 und 6) erfolgt mit Hilfe einer mit Druck beaufschlagten Säule (a). Daher gibt es keine Verbidungselemente, Stangen, Kolben, Puffer oder Stifte. Diese Ölsäule befindet sich in einem teleskopförmigen Zylinder (1), dessen Dichtungslippen an jedem Ende durch mechanischen Kontakt die balligen Oberflächen (3) des Zylinderkopfes (4) und die ballige Oberflächen der rotierenden Welle (2) abdichten. Die Dichtungslippen behalten ihren Kreisquerschnitt auch unter Druck bei, so dass keine Veränderung der Dichtungsgeometrie eintritt. Durch sorgfältige Materialauswahl und Designoptimierung wurden Reibung und Leckverluste auf ein Minimum reduziert. Der Verzicht auf Schubstangen stellt einen weiteren Vorteil dieser Konstruktion dar, wodurch sich der Zylinder nur linear ausdehnen und zusammenziehen kann und keine Querkräfte durch Schub auftreten können. Dadurch treten weder Verschleiß an bewegten Teilen noch Seitenkräfte an den Verbindungsstellen des Zylinders auf. Die zweifache Verdrängung wird über eine exzentrisch gelagerte Nockenscheibe, die radial frei beweglich ist und ihre Exzentrizität verändern kann, erzielt. Dadurch können viele verschiedene Werte für die Verdrängung gewählt werden. Die radiale Bewegung wird über hydraulische Zylinder (5) in der Antriebswelle (6) gesteuert.

VENTILSTEUERUNG


WIRKUNGSGRAD

Die Ventilsteuerung besteht aus einem Drehkolbenventil (8), das von einer Drehkolbenventilwelle (9) angetrieben wird, die mit der rotierenden exzentrischen Welle verbunden ist. Das Drehkolbenventil dreht zwischen dem rotierenden Druckanschluss (7) und dem Druckring (10), die am Drehkolbenventilgehäuse fixiert sind. Diese patentierte Ventilsteuerung wird durch Druck gewuchtet und kann thermische Ausdehnungen selbsttätig ausgleichen.

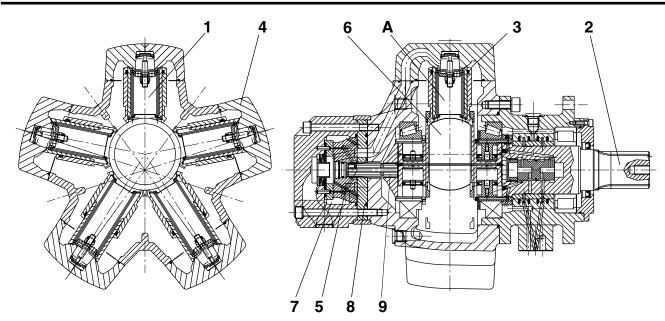
Die Verdrängungszylinder werden über den rotierenden Druckanschluss (7) gespeist. Die Verdrängung kann selbst bei Volllastbetrieb verändert werden.

Diese Ventiltypen, kombiniert mit dem neuartigen Antriebssystem, ergeben einen Motor mit extrem hohen Werten für die mechanischen und volumetrischen Wirkungsgrade. Das Abgangsdrehmoment ist selbst bei niedrigen Drehzahlen und unter hohem Druck schwankungsfrei und der Motor liefert auch beim Anfahren unter Last eine hohe Leistung.

MRV-MRVE FUNKTIONSBESCHREIBUNG

Das hervorragende Betriebsverhalten dieses Motors ist das Ergebnis einer eigenständigen Entwicklung und einer patentierten Konstruktion. Die Kraftübertragung auf die Antriebswelle (2 und 6) erfolgt mit Hilfe einer mit Druck beaufschlagten Säule (a). Daher gibt es keine Verbindungselemente, Stangen, Kolben, Puffer oder Stifte, Diese Ölsäule befindet sich in einem teleskopförmigen Zylinder (1), dessen Dichtungslippen an jedem Ende durch mechanischen Kontakt die balligen Oberflächen (3) des Zylinderkopfes (4) und die ballige Oberflächen der rotierenden Welle (2) abdichten. Die Dichtungslippen behalten ihren Kreisquerschnitt auch unter Druck bei, so dass keine Veränderung der Dichtungsgeometrie eintritt. Durch sorgfältige Materialauswahl und Designoptimierung wurden Reibung und Leckverluste auf ein Minimum reduziert. Der Verzicht auf Schubstangen stellt einen weiteren Vorteil dieser Konstruktion dar. wodurch sich der Zylinder nur linear ausdehnen und zusammenziehen kann und keine Querkräfte durch Schub auftreten können. Dadurch treten weder Verschleiß an bewegten Teilen noch Seitenkräfte an den Verbindungsstellen des Zylinders auf.

Die zweifache Verdrängung wird über eine exzentrisch gelagerte Nockenscheibe, die radial frei beweglich ist und ihre Exzentrizität verändern kann, erzielt. Dadurch können viele verschiedene Werte für die Verdrängung gewählt werden. Die Radialbewegung wird über die Hydraulikzylinder (5) und das Ventil (11) in der Antriebswelle (6) gesteuert. Das Ventil ermöglicht eine schrittweise Bewegung der in der Hauptwelle innenliegenden Zylinder, wodurch die Verdrängung verändert wird. Die Verdrängungszylinder werden über den rotierenden Druckanschluss (7) gespeist. Die Verdrängung kann selbst bei Volllastbetrieb verändert werden.


Die Ventilsteuerung besteht aus einem Drehkolbenventil (8), das von einer Drehkolbenventilwelle (9) angetrieben wird, die mit der rotierenden exzentrischen Welle verbunden ist. Das Drehkolbenventil dreht zwischen dem rotierenden Druckanschluss (7) und dem Druckring (10), die am Drehkolbenventilgehäuse fixiert sind. Diese patentierte Ventilsteuerung wird durch Druck gewuchtet und kann thermische Ausdehnungen selbsttätig ausgleichen.

Genau wie die MR-Serie besitzt der Motor ein patentiertes Verteilerventil mit Druckausgleich, welches thermische Ausdehnung selbsttätig ausgleicht. Das Abgangsdrehmoment ist selbst bei niedrigen Drehzahlen und unter hohem Druck schwankungsfrei und der Motor liefert auch beim Anfahren unter Last eine hohe Leistung.

VENTILSTEUERUNG

WIRKUNGSGRAD

MRV 450 FUNKTIONSBESCHREIBUNG

Die extreme Vielseitigkeit dieses Motors resultiert aus zwei einfachen aber genialen Konstruktionen, die in einer Maschine kombiniert wurden. Die Rotation der Welle basiert auf dem gleichen patentierten Prinzip wie dem des MR Motors, jedoch ist der MRV noch mit integrierten Zylindern ausgestattet, die die Verdrängung auch dann variieren, selbst während der Motor unter Volllast dreht. Die Kraftübertragung vom Stator auf den exzentrischen Teil der Welle erfolgt mit einer druckbeaufschlagten Ölsäule.

Diese Ölsäule befindet sich in einem teleskopförmigen Zylinder, dessen Dichtungslippen nur am Ende mechanischen Kontakt haben und dadurch die balligen Oberflächen des Stators und des Rotors abdichten. Die Dichtungslippen behalten ihren Kreisquerschnitt auch unter Druck bei, weshalb keine Veränderung der Dichtungsgeometrie eintritt. Durch sorgfältige Materialauswahl und Designoptimierung wurden Reibung und Leckverluste auf ein Minimum reduziert. Der Verzicht auf Schubstangen stellt einen weiteren Vorteil dieser Konstruktion dar, wodurch sich der Zylinder nur linear ausdehnen und zusammenziehen kann und keine Querkräfte durch Schub auftreten können.

Dadurch treten weder Verschleiß an bewegten Teilen noch Seitenkräfte an den Verbindungsstellen des Zylinders auf. Durch diese neuartige Konstruktion konnten Gewicht und Größe im Verhältnis zu anderen Motoren dieser Leistungsklasse erheblich reduziert werden.

Der exzentrische Teil der Welle des MRV Motors kann sich radial frei bewegen. Die Radialbewegung wird von zwei in der Welle integrierten Hydraulikzylindern gesteuert. Entsprechend der Veränderung der Exzentrizität verändert sich der Hub der Teleskopzylinder und dadurch die Verdrängung.

Die Verdrängung kann stufenlos über vollständige Exzentrizität (höchste Verdrängung) und vollständige Zentrierung geregelt werden. Durch Verwendung von Distanzstücken in den seitlichen Zylindern können größte und niedrigste Verdrängung begrenzt werden, wodurch der Motor den Anforderungen der jeweiligen Anwendung genau angepasst werden kann. Die Ausführung als variable Verdrängung kann in Verbindung mit hydraulischen Regelventilen für eine Reihe von Steuerungssysteme, wie z.B. Betrieb mit konstantem Druck, konstanter Leistung und zwei Drehzahlen, verwendet werden. Durch die Verwendung von elektronischen Reglern können weitere hochleistungsfähige Steuerungen, wie z.B. Drehzahlsteuerung, Drehmomentensteuerung und Hauptkreislauf realisiert werden.

Genau wie die MR Serie besitzt der Motor ein patentiertes, Verteilerventil, mit Druckausgleich, das thermische Ausdehnung selbstätig ausgleicht. Diese Ventiltypen, kombiniert mit der neuartigen Zylinderanordnung, ergeben einen Motor mit extrem hohen Werten für die mechanischen und volumetrischen Wirkungsgrade. Das Abgangsdrehmoment ist selbst bei niedrigen Drehzahlen schwankungsfrei und der Motor liefert auch beim Anfahren unter Last eine hohe Leistung.

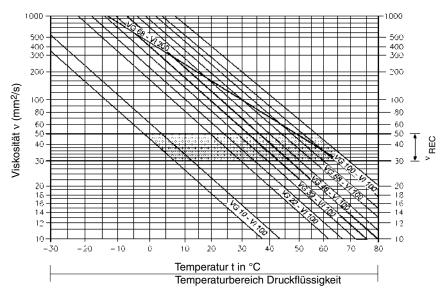
KRAUSE+KÄHLER **Hydraulikkompetenz.de** +49 (0) 451 - 87 97 740

Motortyp MRD, MRDE, MRV, MRVE

Gi	röße	_	drän- ung	Trägheits moment rotie-	theore- tisches spezi- fisches	Mini- males Anfahr- moment/ Theore-		Hö	chstdr	uck		rei	ahlbe- ch	maxi Abga leist	ngs- ung	Gewicht
M	otor rsion	9	9	render Teile	Drehmo- ment	tisches Drehmo-	Dru- kont.	dis- kont.	Druck- spitze	A+B *	Leck- leitung	Spi	ilen mit	Spü ohne	ilen mit	
			V	J		ment %	р	р	р	р	р	n	n	Р	Р	m
		С	m3	kg cm ²	Nm/bar		bar	bar	bar	bar	bar	U/min	U/min	kW	kW	kg
		min.	152,1	58,50	2,42	-						1-1000	1-1000	20	35	
M	300	max.	304,1	65,50	4,80	90						1-750	1-750	35	53	56
R D		Min.	225,8	208,40	3,60	-						1-850	1-850	29	45	
_	450	max.	451,6	229,80	7,20	90						1-600	1-600	46	75	83
M		min.	133,5	185,50	2,11	-						1-1000	1-1000	22	35	
R V	450	max.	451,6	229,80	7,20	90						1-600	1-600	46	75	110
•		min.	237,6	309,67	3.80	-					5	1-750	1-750	26	45	
	700	max.	706,9	358,40	11,30	90					(15 bar	1-500	1-500	65	97	103
		min.	381,3	392,67	6,10	-					mit	0,5-600	0,5-600	34	54	
М	1100	max.	1125,8	451,50	17,90	90	250	300	420	400	F1 Wellen	0,5-330	0,5-330	77	119	147
R		min.	603,2	752,89	9,6	-						0,5-450	0,5-450	46	69	
D	1800	max.	1809,6	854,10	28,80	90					tung)	0,5-250	0,5-250	103	157	209
М		min.	930,7	2622,99	14,8	-						0,5-120	0,5-320	52	80	
R	2800	max.	2792,0	2975,70	44,50	90						0,5-120	0,5-215	127	194	337
٧		min.	1497,8	4420,44	23,9	-						0,5-100	0,5-280	55	85	
	4500	max.	4502,7	5015,10	71,70	91						0,5-80	0,5-170	140	210	520
		min.	2322,4	10149,53	36,98	-						0,5-100	0,5-210	82	125	
	7000	max.	6967,2	11376,60	110,94	91						0,5-80	0,5-130	170	250	812
		min.	166,2	58,50	2,65	-						1-1000	1-1000	21	32	
M R	330	max.	332,4	65,50	5,30	90						1-750	1-750	32	49	56
D		min.	248,9	208,40	3,96	-						1-800	1-800	26	38	
Ε	500	max.	497,9	229,80	7,93	90						1-600	1-600	46	70	83
		min.	270,2	309,67	4,27	-						1-750	1-750	26	40	
	800	max.	804,2	358,40	12,81	90					_	1-450	1-450	65	93	103
		min.	463,9	392,67	9,85	-					5 (15 bar	0,5-550	0,5-550	38	55	
M R	1400	max.	1369,5	451,50	21,80	92					mit	0,5-280	0,5-280	77	102	147
D		min.	697,0	752,89	16,65	-	210	250	350	400	F1 Wellen	0,5-420	0,5-420	46	72	
Ε	2100	max.	2091,2	854,10	33,30	91					dich-	0,5-250	0,5-250	100	148	226
М			1034,6	2622,99	24,71	-					tung)	0,5-120	0,5-300	55	85	
R	3100		3103,7	2975,70	49,40	91							0,5-215	125	190	341
٧			1800,4	4420,44	43,00	-							0,5-250	65	100	
E	5400		5401,2	5015,10	86,01	92							0,5-160	140	210	524
			2742,1	10149,53	43,63	-							0,5-200	80	134	
	8200		8226,4	11376,60	130,90	91							0,5-120	170	250	822

(*) SETZEN SIE SICH BITTE MIT PARKER HANNIFIN - CALZONI DIVISION IN VERBINDUNG.

Katalog HY02-8001/DE


Auswahl Druckflüssigkeit

Motortyp MRD, MRDE, MRV, MRVE

BEISPIEL: Bei einer bestimmten Umgebungstemperatur beträgt die Kreislauftemperatur 50 °C. Im optimalen Betriebsviskositätsbereich (vrec; eingefärbter Bereich), entspricht dies den Viskositätsgraden VG 46 oder VG 68; wobei VG 68 gewählt werden sollte.

WICHTIGER HINWEIS! Die Temperatur des Lecköls wird vom Druck und von der Drehzahl bestimmt und ist normalerweise höher als die Kreislauftemperatur oder Tanktemperatur. Zu keinem gegebenen Zeitpunkt darf die Temperatur des Systems höher als 80 °C sein. Falls die optimalen Betriebsbedingungen wegen extremer Betriebsparameter oder hoher Umgebungstemperauren nicht eingehalten werden können, empfehlen wir immer das Motorgehäuse zu spülen, um die angegebenen Grenzwerte für die Viskosität einzuhalten.

Falls es zwingend erforderlich sein sollte, eine Druckflüssigkeit mit einer Viskosität über dem empfohlenen Viskositätsbereich zu verwenden, müssen Sie sich zuerst mit PARKER HANNIFIN - CALZONI DIVISION in Verbindung setzen, um eine Freigabe für eine andere Viskosität zu erhalten.

ALLGEMEINE HINWEISE

BETRIEBSVISKOSITÄTSBEREICH

Weitere Informationen bezüglich der Wahl der Druckflüssigkeit können bei PARKER HANNIFIN - CALZONI DIVISION angefordert werden. Falls HF- oder biologisch abbaubare Druckflüssigkeiten zum Einsatz kommen, müssen Einschränkungen der technischen Daten berücksichtigt werden. Siehe Informationsblatt TCS 85 oder konsultieren Sie PARKER HANNIFIN - CALZONI DIVISION.

Viskosität, Qualität und Reinheit der Druckflüssigkeit sind entscheidende Faktoren, die die Zuverlässigkeit, Leistung und Lebensdauer eines hydraulischen Bauteils bestimmen. Die höchste Lebensdauer und Leistung können nur innerhalb des empfohlenen Viskositätsbereiches erreicht werden. Bei Anwendungen, die über den angegebenen Bereich hinausgehen, empfehlen wir, dass Sie sich mit PARKER HANNIFIN - CALZONI DIVISION in Verbindung setzen.

v_{rec.} = empfohlene Betriebsviskosität 30...50 mm²/s

Sie ist die Viskosität, die die Druckflüssigkeit bei gegebener Temperatur beim Eintritt in den Motor besitzt. Sie ist auch die Viskosität, die innerhalb des Motorgehäuses bei gegebener Gehäusetemperatur vorliegt. Daher empfehlen wir, eine Viskosität entsprechend der höchsten Betriebsemperatur zu wählen, um innherhalb des emfpholenen Viskositätsbereiches zu bleiben. Um die höchste kontinuierliche Leistung zu erreichen, sollte die Betriebsviskosität innerhalb des empfohlenen Viskositätsbereiches von 30 - 50 cSt liegen.

GRENZWERTE VISKOSITÄTSBEREICH

ES GELTEN DIE FOLGENDEN GRENZWERTE:

v_{min.}abs.= 10 mm²/s Notlauf, kurzzeitig

v_{min.} = 18 mm²/s kontinuierlicher Betrieb bei gedrosselter Leistung

v_{max.} = 1000 mm²/s Kaltstart, kurzzeitig

AUSWAHL DRUCKFLÜSSIGKEIT NACH BETRIEBS TEMPERATUR

FILTERUNG

Die Betriebstemperatur des Motors ist als die höhere von beiden Temperaturen, der Temperatur der einströmenden Druckflüssigkeit und der im Motorgehäuse herrschenden Temperatur definiert.

(Gehäusetemperatur). Daher empfehlen wir, eine Viskosität entsprechend der höchsten Betriebstemperatur zu wählen, um innerhalb des empfohlenen Viskositätsbereiches zu bleiben (siehe Diagramm). Wir empfehlen, dass in jedem Fall die höhere Viskositätsklasse gewählt wird. Die Lebensdauer des Motors hängt auch von der Güte der Filterung ab. Sie muss mindestens einer der folgenden Reinheitsklassen entsprechen:

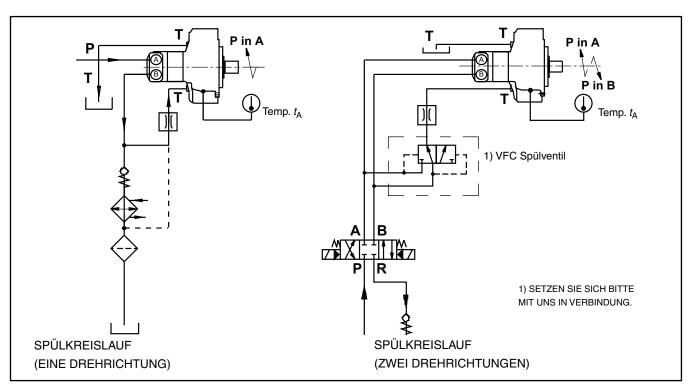
Filterklasse 9 nach NAS 1638
Klasse 6 nach SAE, ASTM, AIA
Reinheitsklasse 18/15 nach ISO/DIS 4406

Um eine höhere Lebensdauer zu gewährleisten, wird die Filterklasse 8 nach NAS 1638 empfohlen, die mit einem β_5 =100 Filter erzielt werden kann. Falls die vorgenannten Klassen nicht erreicht werden können, setzen Sie sich bitte mit uns in Verbindung.

LECKLEITUNGSDRUCK GEHÄUSE

Je niedriger Drehzahl und der Leckleitungsdruck des Gehäuses sind, je höher ist die Lebensdauer der Wellendichtung. Der höchstzulässige Leckleitungsdruck des Gehäuses beträgt $P_{\text{max}} = 5$ bar

Falls der Leckleitungsdruck höher als 5 bar kann eine gesonderte 15 bar-Wellendichtung (siehe Seite 47, Dichtungen, Kode F1) verwendet werden.


Falls Betriebsbedingungen mit hohen Öltemperaturen oder hohen Umgebungstemperaturen herrschen, empfehlen wir FPM Dichtungen (siehe Seite 47, Dichtungen, Kode V1) zu verwenden. Diese FPM Dichtungen müssen mit HFD Flüssigkeiten oder falls ausdrücklich vorgeschrieben,

FPM DICHTUNGEN

verwendet werden.

KRAUSE+KÄHLER Hydraulikkompetenz.de+49 (0) 451 - 87 97 740

FLUSHING

Der Motor muss bei kontinuierlichem Betrieb entsprechend den Betriebsbedingungen "Kontinunierlicher Betrieb mit Spülen" (siehe Kennlinien Seiten 8- 18) gespült werden, damit die minimale Ölviskosität im Motorgehäuse von 30 mm2/s (siehe Seite 8 - Auswahl Druckflüssigkeit) nicht unterschritten wird. Der Spülvorgang kann auch dann erforderlich sein, wenn der Motor außerhalb der Betriebsbedingungen "Kontinuierlicher Betrieb mit Spülen" betrieben wird, aber das System die erforderliche minimale Viskosität für den Motor (wie auf Seite 6 spezifiziert), nicht gewährleisten kann.

HINWEIS 1:

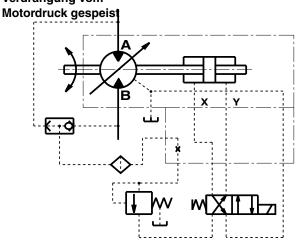
Die Öltemperatur im Motorgehäuse kann durch Addition von 3 $^{\circ}$ C zur Motoraußentemperatur ermittelt werden (tA , siehe Abbildung).

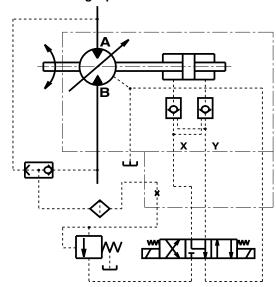
HINWEIS 2:

Der höchstzulässige Leckleitungsdruck des Gehäuses beträgt bei Verwendung von Standard-Wellendichtungen 5 bar. Informationen bezüglich der Auswahl des Drosselventils erhalten Sie bei uns.

VOLUMENSTROM

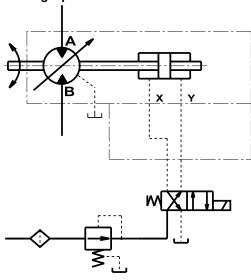
ТҮР	MOTORVERSION	SPÜLEN VOLUMEN- STROM
MRD - MRDE	300, 330	Q = 6 l/min
MRD - MRDE MRV	450, 500	Q = 8 l/min
MRD - MRDE MRV - MRVE	700, 800, 1100, 1400	Q = 10 l/min
MRD - MRDE MRV - MRVE	1800, 2100	Q = 15 l/min
MRD - MRDE MRV - MRVE	2800, 3100, 4500, 5400, 7000, 8200	Q = 20 l/min

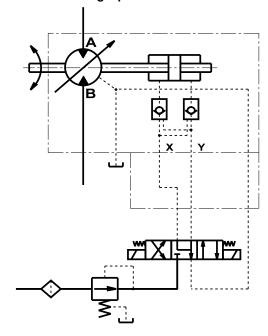

MRD, MRDE, MRV, MRVE


INTERNE VENTILSTEUERUNG

Entnehmen Sie den erforderlichen Mindestdruck den Kennlinien, wenn Sie Verdrängung des Motors verstellen wollen.

Interne Vorsteuerung doppelt wirkender Steuerzylinder für Steuerung der Verdrängung vom

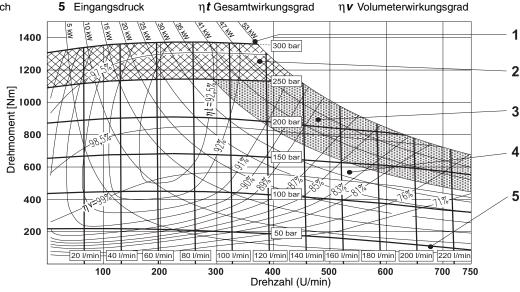

Interne Vorsteuerung Magnetventil für Steuerung der Verdrängung vom Motordruck gespeist


EXTERNE VENTILSTEUERUNG

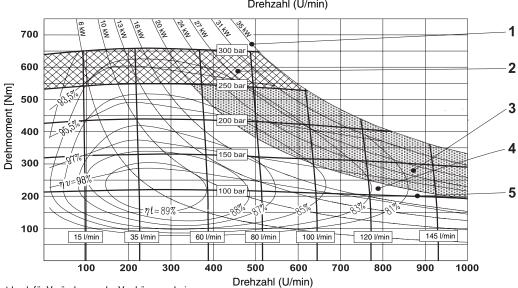
Erforderlicher externer Druck beträgt 160 bar.

Externe Vorsteuerung doppelt wirkender Steuerzylinder für Steuerung der Verdrängung vom Motordruck gespeist

Externe Vorsteuerung Magnetventil für Steuerung der Verdrängung vom Motordruck gespeist

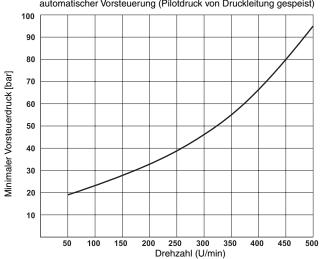

KENNLINIE

(Durchschnittswerte) gemessen beiV = 36 mm²/s; t = 45 °C; $p_{Leckleitung}$ = 0 bar

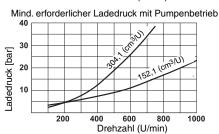

- 1 Abgangsleistung
- 2 Diskontinuierlicher Betriebsbereich
- 3 kontinuierlicher Betriebsbereich mit Spülen

4 kontinuierlicher Betriebsbereich

MRD 300 eingestellt auf 304 cm³



MRD 300 eingestellt auf 152 cm³



Mind. erforderlicher Pilotdruck für Veränderung der Verdrängung bei automatischer Vorsteuerung (Pilotdruck von Druckleitung gespeist)

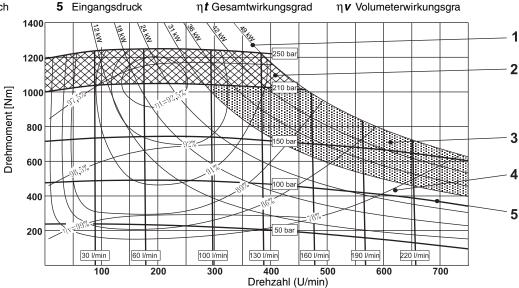
> Leerlaufdruck [bar] 20 10 400 600 800 Drehzahl (U/min) 200

Gültig bei einem Gegendruck bis zu 50 bar, Ablassdruck bis zu 5 bar Bitte konsultieren Sie uns bei anderen Betriebsbedingungen.

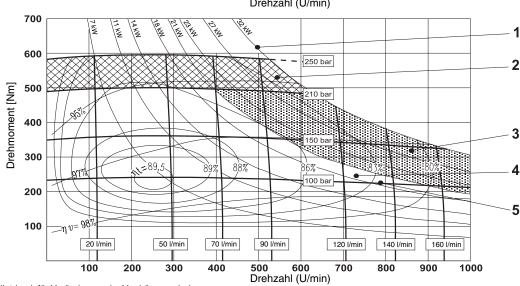
Mind. erforderlicher Druck∆p bei Leerlaufdrehzahl (Welle ohne Last)

Motortyp MRD, MRDE, MRV, MRVE

Kennlinie


KENNLINIE

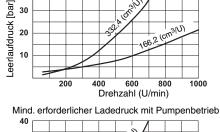
(Durchschnittswerte) gemessen beiV = 36 mm²/s; t = 45 °C; $p_{Leckleitung}$ = 0 bar

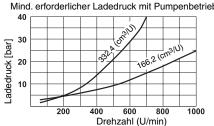

- 1 Abgangsleistung
- 2 Diskontinuierlicher Betriebsbereich
- 3 kontinuierlicher Betriebsbereich mit Spülen

4 kontinuierlicher Betriebsbereich

MRDE 330 eingestellt auf 332 cm³

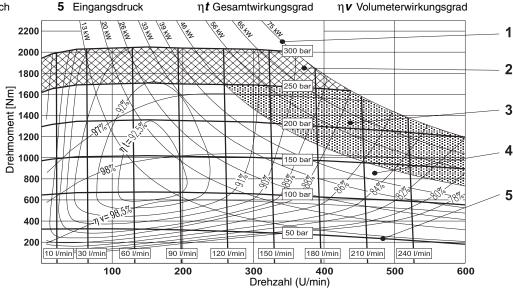
MRDE 330 eingestellt auf 166 cm³



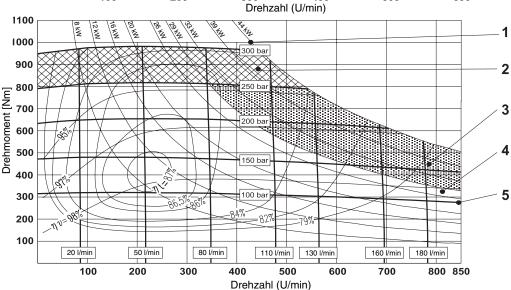

Mind. erforderlicher Pilotdruck für Veränderung der Verdrängung bei automatischer Vorsteuerung (Pilotdruck von Druckleitung gespeist)

Gültig bei einem Gegendruck bis zu 50 bar, Ablassdruck bis zu 5 bar Bitte konsultieren Sie uns bei anderen Betriebsbedingungen.

Motortyp MRD, MRDE, MRV, MRVE


KENNLINIE

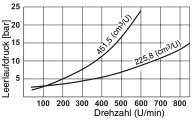
(Durchschnittswerte) gemessen beiV = 36 mm²/s; t = 45 °C; $p_{Leckleitung}$ = 0 bar


- 1 Abgangsleistung
- 2 Diskontinuierlicher Betriebsbereich
- 3 kontinuierlicher Betriebsbereich mit Spülen

4 kontinuierlicher Betriebsbereich

MRD 450 eingestellt auf 452 cm³

MRD 450 eingestellt auf 226 cm³



Mind. erforderlicher Pilotdruck für Veränderung der Verdrängung bei

automatischer Vorsteuerung (Pilotdruck von Druckleitung gespeist) 30 28 26 Minimaler Vorsteuerdruck [bar] 24 22 20 18 16 14 12 400 100 150 200 250 300 350 Drehzahl (U/min)

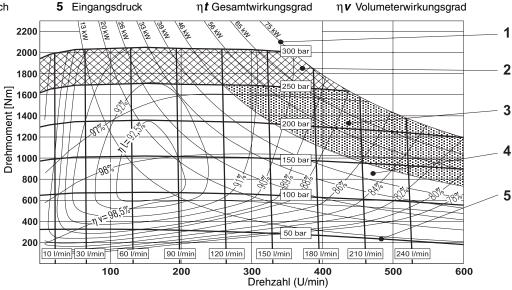
Gültig bei einem Gegendruck bis zu 50 bar, Ablassdruck bis zu 5 bar Bitte konsultieren Sie uns bei anderen Betriebsbedingungen.

Mind. erforderlicher Ladedruck mit Pumpenbetrieb 30 25 [par] Ladedruck [b 100 200 300 400 500 600 700 800 Drehzahl (U/min)

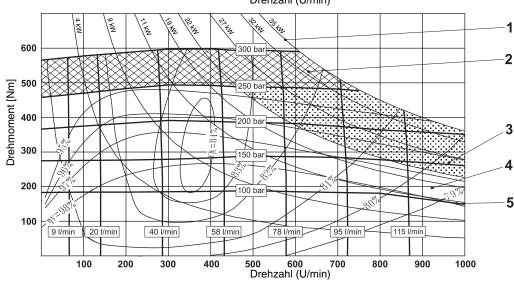
Kennlinie

MRD, MRDE, MRV, MRVE

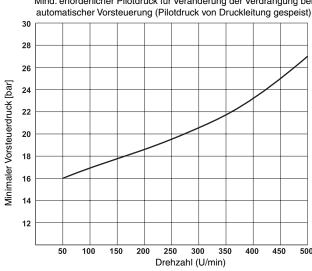
KENNLINIE


(Durchschnittswerte) gemessen beiV = 36 mm²/s; t = 45 °C; $p_{Leckleitung}$ = 0 bar

1 Abgangsleistung


- 2 Diskontinuierlicher Betriebsbereich
- 3 kontinuierlicher Betriebsbereich mit Spülen

kontinuierlicher Betriebsbereich

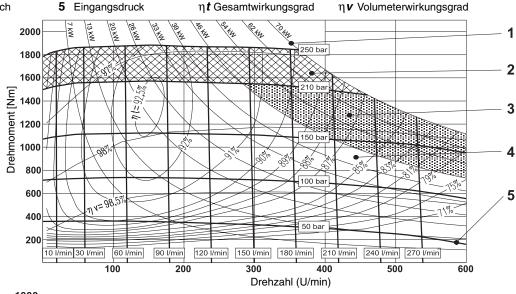

MRV 450 eingestellt auf 452 cm³

MRV 450 eingestellt auf 134 cm³

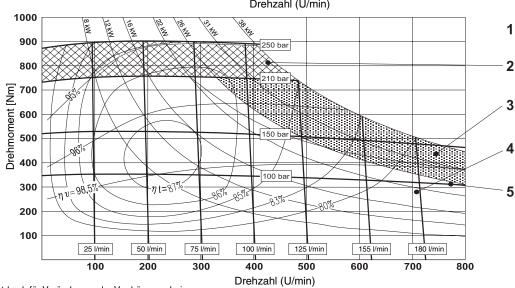
Mind. erforderlicher Pilotdruck für Veränderung der Verdrängung bei

Gültig bei einem Gegendruck bis zu 50 bar, Ablassdruck bis zu 5 bar Bitte konsultieren Sie uns bei anderen Betriebsbedingungen.

Drehzahl (U/min) Mind. erforderlicher Ladedruck mit Pumpenbetrieb 25 [20 20 Ladedruck [200 400 600 800 1000 Drehzahl (U/min)


KENNLINIE

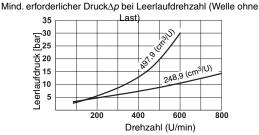
(Durchschnittswerte) gemessen beiV = 36 mm²/s; t = 45 °C; $p_{Leckleitung}$ = 0 bar

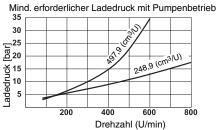

- 1 Abgangsleistung
- 2 Diskontinuierlicher Betriebsbereich
- 3 kontinuierlicher Betriebsbereich mit Spülen

4 kontinuierlicher Betriebsbereich

MRDE 500 eingestellt auf 498 cm³

MRDE 500 eingestellt auf 249 cm³


Gültig bei einem Gegendruck bis zu 50 bar, Ablassdruck bis zu 5 bar Bitte konsultieren Sie uns bei anderen Betriebsbedingungen.


250

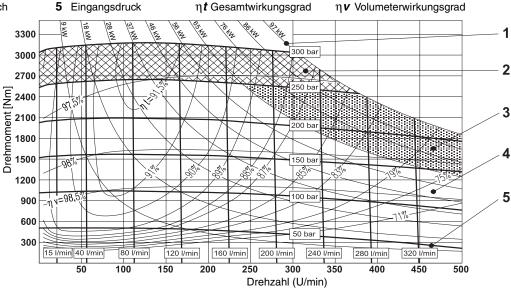
300

Drehzahl (U/min)

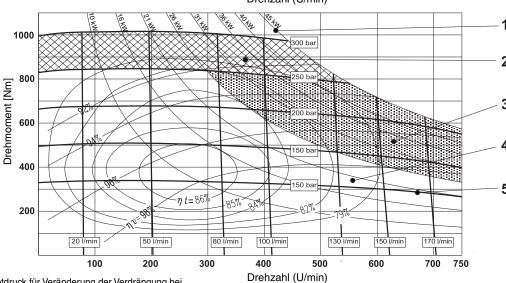
350 400

100

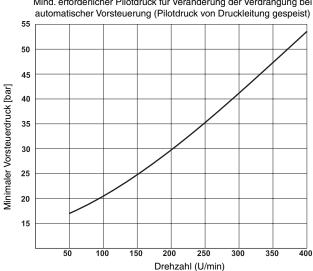
150

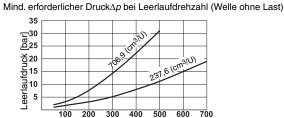

200

KENNLINIE


(Durchschnittswerte) gemessen beiV = 36 mm²/s; t = 45 °C; $p_{Leckleitung}$ = 0 bar

- 2 Diskontinuierlicher Betriebsbereich 3 kontinuierlicher Betriebsbereich mit Spülen 1 Abgangsleistung
- kontinuierlicher Betriebsbereich


MRD 700 MRV 700 eingestellt auf 707 cm³

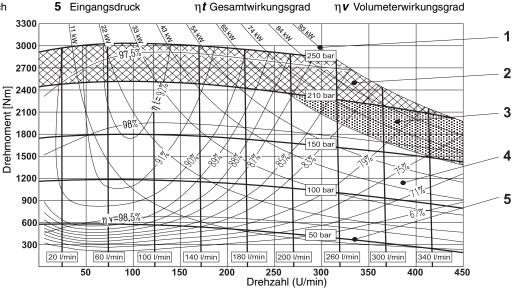

MRD 700 MRV 700 eingestellt auf 238 cm³

Mind. erforderlicher Pilotdruck für Veränderung der Verdrängung bei

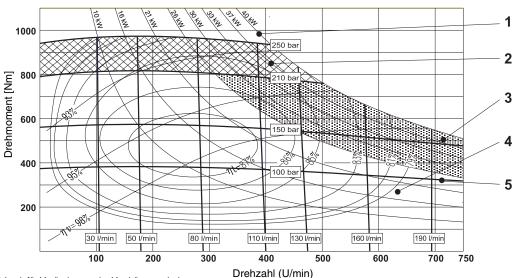
Gültig bei einem Gegendruck bis zu 50 bar, Ablassdruck bis zu 5 bar Bitte konsultieren Sie uns bei anderen Betriebsbedingungen.

Drehzahl (U/min) Mind. erforderlicher Ladedruck mit Pumpenbetrieb 35 ,30 Eg 25 Ladedruck [b o 12 0 2 0 12 02 Drehzahl (U/min)

Motortyp MRD, MRDE, MRV, MRVE


KENNLINIE

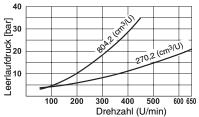
(Durchschnittswerte) gemessen beiV = 36 mm²/s; t = 45 °C; $p_{Leckleitung}$ = 0 bar

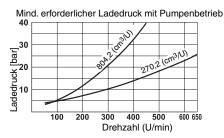

- 1 Abgangsleistung
- 2 Diskontinuierlicher Betriebsbereich
- 3 kontinuierlicher Betriebsbereich mit Spülen

4 kontinuierlicher Betriebsbereich

MRDE 800 MRVE 800 eingestellt auf 804 cm³

MRDE 800 MRVE 800 eingestellt auf 270 cm³




Mind. erforderlicher Pilotdruck für Veränderung der Verdrängung bei automatischer Vorsteuerung (Pilotdruck von Druckleitung gespeist)

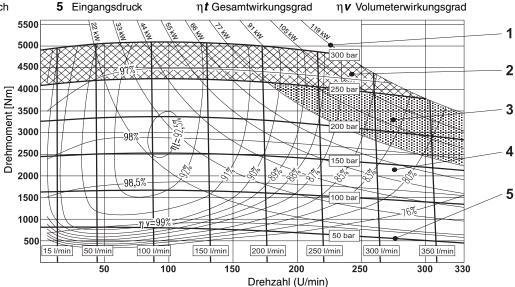
70 60 minimaler Vorsteuerdruck [bar] 50 40 30 20 150 200 250 Drehzahl (U/min)

Gültig bei einem Gegendruck bis zu 50 bar, Ablassdruck bis zu 5 bar Bitte konsultieren Sie uns bei anderen Betriebsbedingungen.

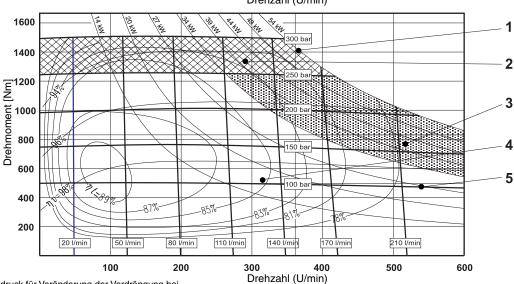
Mind. erforderlicher Druck∆p bei Leerlaufdrehzahl (Welle ohne Last)

Motortyp MRD, MRDE, MRV, MRVE

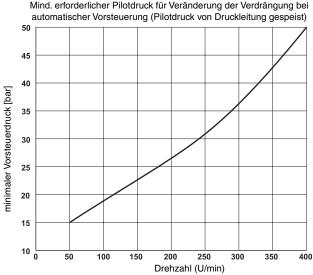
Kennlinie


KENNLINIE

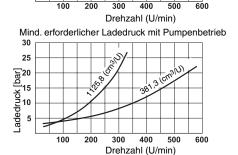
(Durchschnittswerte) gemessen beiV = 36 mm²/s; t = 45 °C; $p_{Leckleitung}$ = 0 bar


- 2 Diskontinuierlicher Betriebsbereich 1 Abgangsleistung
- kontinuierlicher Betriebsbereich

3 kontinuierlicher Betriebsbereich mit Spülen

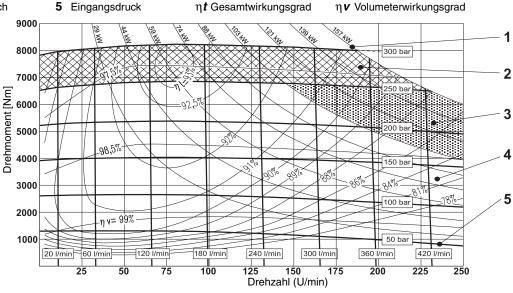

MRD 1100 MRV 1100 eingestellt auf 1126 cm³

MRD 1100 **MRV 1100** eingestellt auf 381 cm³

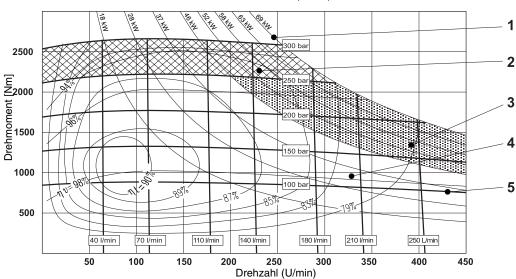


Mind. erforderlicher Pilotdruck für Veränderung der Verdrängung bei

Gültig bei einem Gegendruck bis zu 50 bar, Ablassdruck bis zu 5 bar Bitte konsultieren Sie uns bei anderen Betriebsbedingungen.

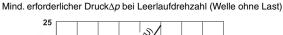

KENNLiNiE

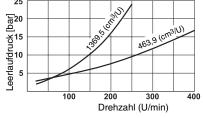
(Durchschnittswerte) gemessen beiV = 36 mm²/s; t = 45 °C; $p_{Leckleitung}$ = 0 bar

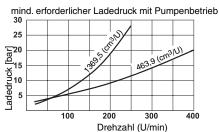

- 1 Abgangsleistung
- 2 Diskontinuierlicher Betriebsbereich
- 3 kontinuierlicher Betriebsbereich mit Spülen

4 kontinuierlicher Betriebsbereich

MRDE 1400 MRVE 1400 eingestellt auf 1370 cm³




MRDE 1400 MRVE 1400 eingestellt auf 464 cm³

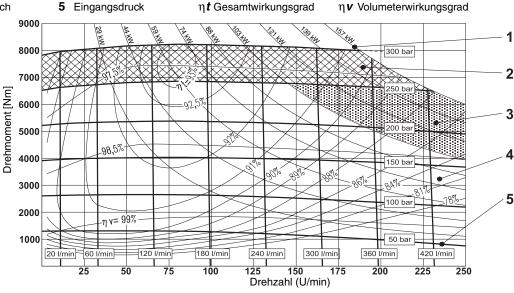


Mind. erforderlicher Pilotdruck für Veränderung der Verdrängung bei automatischer Vorsteuerung (Pilotdruck von Druckleitung gespeist) 34 32 30 minimaler Vorsteuerdruck [bar] 28 26 24 22 20 18 Drehzahl (U/min)

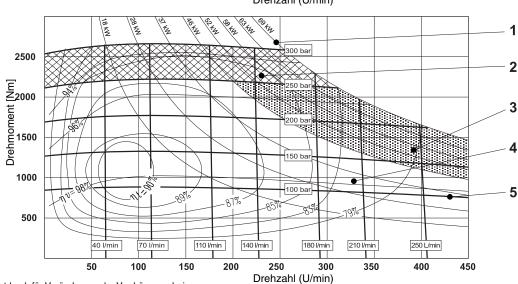
Gültig bei einem Gegendruck bis zu 50 bar, Ablassdruck bis zu 5 bar Bitte konsultieren Sie uns bei anderen Betriebsbedingungen.

Motortyp MRD, MRDE, MRV, MRVE

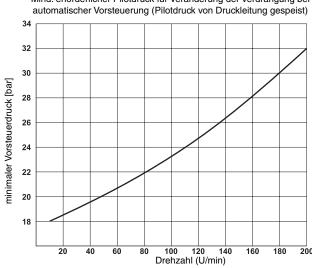
KENNLINIE


(Durchschnittswerte) gemessen beiV = 36 mm²/s; t = 45 °C; $p_{Leckleitung}$ = 0 bar

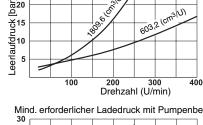
1 Abgangsleistung


- 2 Diskontinuierlicher Betriebsbereich
- 3 kontinuierlicher Betriebsbereich mit Spülen

kontinuierlicher Betriebsbereich


MRD 1800 MRV 1800 eingestellt auf 1810 cm³

MRD 1800 MRV 1800 eingestellt auf 603 cm³



Mind. erforderlicher Pilotdruck für Veränderung der Verdrängung bei

Gültig bei einem Gegendruck bis zu 50 bar, Ablassdruck bis zu 5 bar Bitte konsultieren Sie uns bei anderen Betriebsbedingungen.

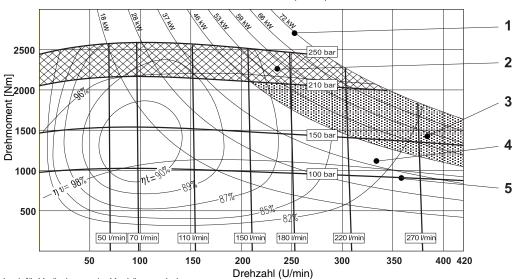
Mind. erforderlicher Ladedruck mit Pumpenbetrieb 25 Ladedruck [bar] 200 300 Drehzahl (U/min)

Kennlinie

MRD, MRDE, MRV, MRVE

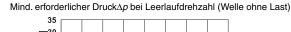

KENNLINIE

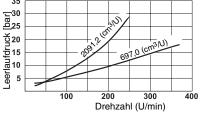
(Durchschnittswerte) gemessen beiV = 36 mm²/s; t = 45 °C; $p_{Leckleitung}$ = 0 bar

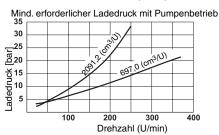

- 1 Abgangsleistung
- 2 Diskontinuierlicher Betriebsbereich
- 3 kontinuierlicher Betriebsbereich mit Spülen

4 kontinuierlicher Betriebsbereich

MRDE 2100 MRVE 2100 eingestellt auf 2091 cm³


MRDE 2100 MRVE 2100 eingestellt auf 697 cm³



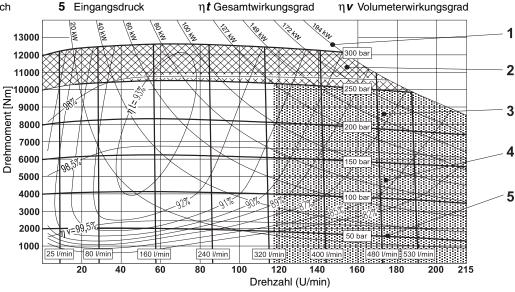

Mind. erforderlicher Pilotdruck für Veränderung der Verdrängung bei

automatischer Vorsteuerung (Pilotdruck von Druckleitung gespeist) 40 35 Minimaler Vorsteuerdruck [bar] 30 20 40 60 80 100 120 140 160 180 Drehzahl (U/min)

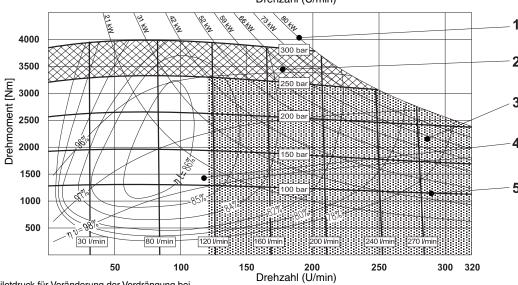
Gültig bei einem Gegendruck bis zu 50 bar, Ablassdruck bis zu 5 bar Bitte konsultieren Sie uns bei anderen Betriebsbedingungen.

Motortyp MRD, MRDE, MRV, MRVE

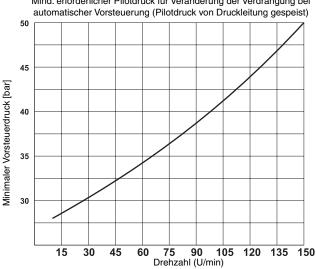
KENNLINIE

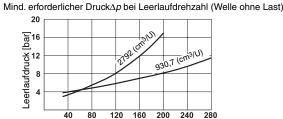

(Durchschnittswerte) gemessen bei $V = 36 \text{ mm}^2\text{/s}$; $t = 45 \,^{\circ}\text{C}$; $p_{\text{Leckleitung}} = 0 \,^{\circ}\text{bar}$

1 Abgangsleistung


- 2 Diskontinuierlicher Betriebsbereich
- 3 kontinuierlicher Betriebsbereich mit Spülen

kontinuierlicher Betriebsbereich

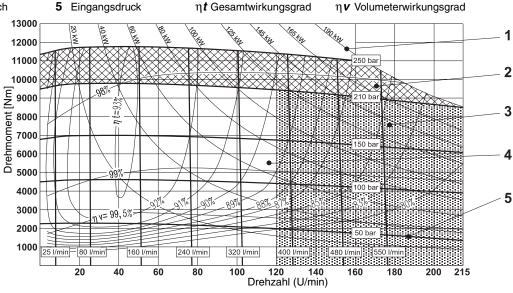

MRD 2800 MRV 2800 eingestellt auf 2792 cm³


MRD 2800 MRV 2800 eingestellt auf 931 cm³

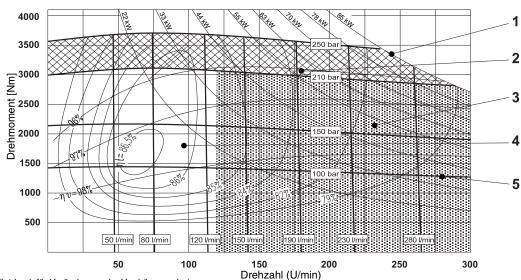
Mind. erforderlicher Pilotdruck für Veränderung der Verdrängung bei

Gültig bei einem Gegendruck bis zu 50 bar, Ablassdruck bis zu 5 bar Bitte konsultieren Sie uns bei anderen Betriebsbedingungen.

Drehzahl (U/min) Mind. erforderlicher Ladedruck mit Pumpenbetrieb 16 [par] Ladedruck 8 200 Drehzahl (U/min)

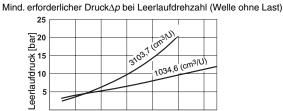


(Durchschnittswerte) gemessen bei $V = 36 \text{ mm}^2\text{/s}$; $t = 45 \,^{\circ}\text{C}$; $p_{\text{Leckleitung}} = 0 \,^{\circ}\text{bar}$


- 1 Abgangsleistung
- 2 Diskontinuierlicher Betriebsbereich
- 3 kontinuierlicher Betriebsbereich mit Spülen

kontinuierlicher Betriebsbereich

MRDE 3100 MRVE 3100 eingestellt auf 3104 cm³


MRDE 3100 MRVE 3100 eingestellt auf 1035 cm³

Mind. erforderlicher Pilotdruck für Veränderung der Verdrängung bei

automatischer Vorsteuerung (Pilotdruck von Druckleitung gespeist) 50 Minimaler Vorsteuerdruck [bar] 40 35 30 90 105 Drehzahl (U/min)

Gültig bei einem Gegendruck bis zu 50 bar, Ablassdruck bis zu 5 bar Bitte konsultieren Sie uns bei anderen Betriebsbedingungen.

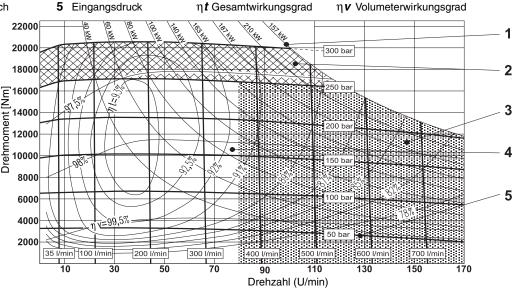
120 160 200 Drehzahl (U/min)

Mind. erforderlicher Ladedruck mit Pumpenbetrieb 20 [par] Ladedruck [40 80 160 200

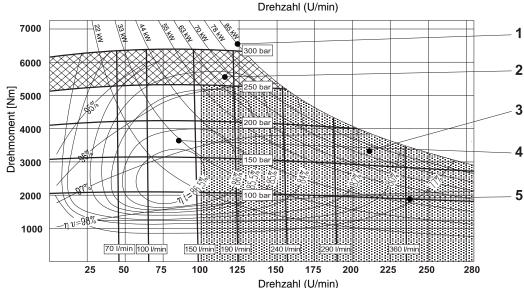
Drehzahl (U/min)

Motortyp MRD, MRDE, MRV, MRVE

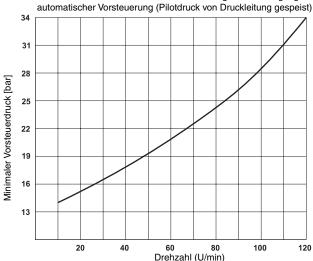
KENNLINIE


(Durchschnittswerte) gemessen bei $V = 36 \text{ mm}^2\text{/s}$; $t = 45 \,^{\circ}\text{C}$; $p_{\text{Leckleitung}} = 0 \,^{\circ}\text{bar}$

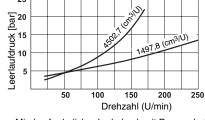
1 Abgangsleistung

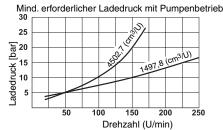

- 2 Diskontinuierlicher Betriebsbereich
- 3 kontinuierlicher Betriebsbereich mit Spülen

kontinuierlicher Betriebsbereich

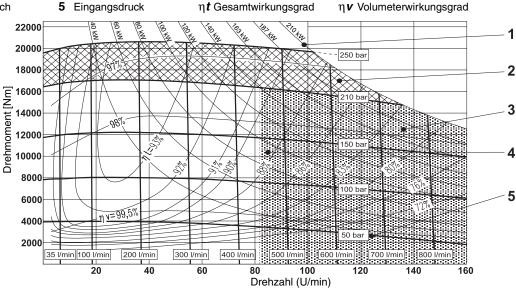

MRD 4500 **MRV 4500** eingestellt auf 4502 cm³

MRD 4500 **MRV 4500** eingestellt auf 1498 cm³



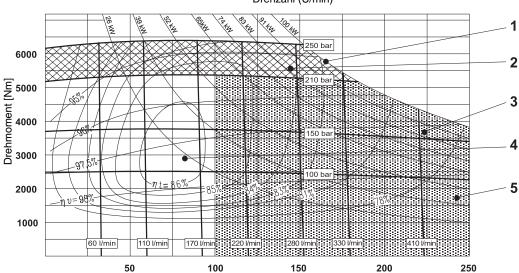

Mind. erforderlicher Pilotdruck für Veränderung der Verdrängung bei

Gültig bei einem Gegendruck bis zu 50 bar, Ablassdruck bis zu 5 bar Bitte konsultieren Sie uns bei anderen Betriebsbedingungen.



(Durchschnittswerte) gemessen bei $V = 36 \text{ mm}^2\text{/s}$; $t = 45 \,^{\circ}\text{C}$; $p_{\text{Leckleitung}} = 0 \,^{\circ}\text{bar}$

- 1 Abgangsleistung
- 2 Diskontinuierlicher Betriebsbereich
- 3 kontinuierlicher Betriebsbereich mit Spülen


kontinuierlicher Betriebsbereich

MRDE 5400 MRVE 5400 eingestellt auf 5401 cm³

MRDE 5400 MRVE 5400 eingestellt auf

1800 cm³

Drehzahl (U/min)

Mind. erforderlicher Pilotdruck für Veränderung der Verdrängung bei automatischer Vorsteuerung (Pilotdruck von Druckleitung gespeist)

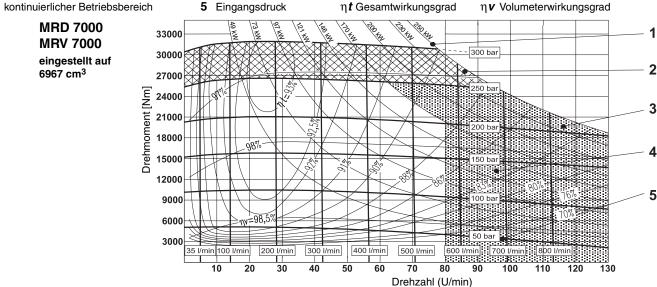
40 36 32 Minimaler Vorsteuerdruck [bar] 28 24 20 20 40 60 80 100 120 Drehzahl (U/min)

Gültig bei einem Gegendruck bis zu 50 bar, Ablassdruck bis zu 5 bar Bitte konsultieren Sie uns bei anderen Betriebsbedingungen.

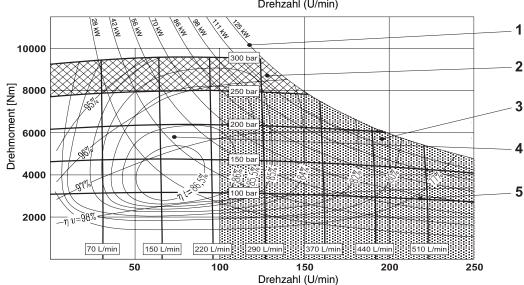
Mind. erforderlicher Ladedruck mit Pumpenbetrieb 30 25 20 20 120 160 Drehzahl (U/min)

KENNLINIE

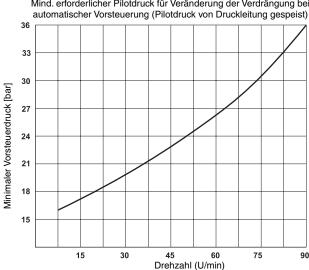
(Durchschnittswerte) gemessen bei $V = 36 \text{ mm}^2\text{/s}$; $t = 45 \,^{\circ}\text{C}$; $p_{\text{Leckleitung}} = 0 \,^{\circ}\text{bar}$


1 Abgangsleistung

2 Diskontinuierlicher Betriebsbereich


3 kontinuierlicher Betriebsbereich mit Spülen

MRD 7000


MRV 7000 eingestellt auf 6967 cm³

MRD 7000 MRV 7000 eingestellt auf 2322 cm³

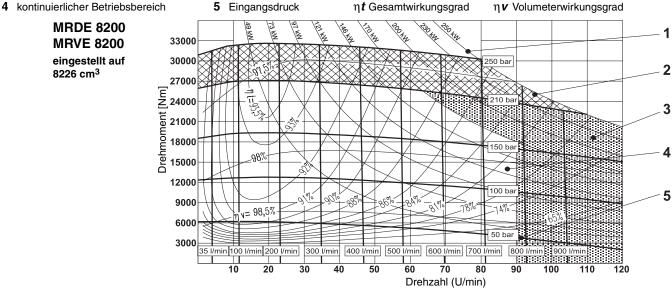
Mind. erforderlicher Pilotdruck für Veränderung der Verdrängung bei

Gültig bei einem Gegendruck bis zu 50 bar, Ablassdruck bis zu 5 bar Bitte konsultieren Sie uns bei anderen Betriebsbedingungen.

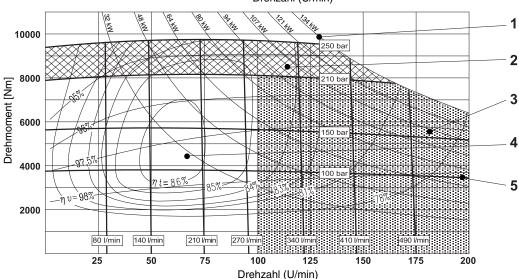
Mind. erforderlicher Ladedruck mit Pumpenbetrieb 25 [20 15 15 Ladedruck [k Drehzahl (U/min)

Kennlinie

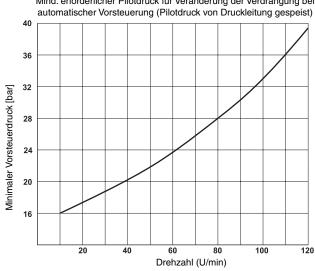
Motortyp MRD, MRDE, MRV, MRVE


KENNLINIE

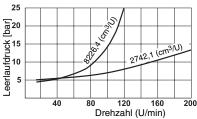
(Durchschnittswerte) gemessen bei $V = 36 \text{ mm}^2\text{/s}$; $t = 45 \,^{\circ}\text{C}$; $p_{\text{Leckleitung}} = 0 \,^{\circ}\text{bar}$


- 1 Abgangsleistung
- 2 Diskontinuierlicher Betriebsbereich
- 3 kontinuierlicher Betriebsbereich mit Spülen

MRDE 8200

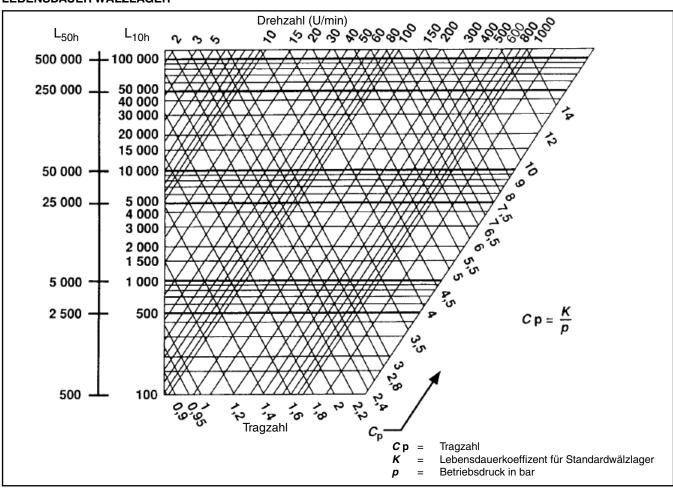

MRVE 8200 eingestellt auf 8226 cm³

MRDE 8200 MRVE 8200 eingestellt auf 2742 cm3



Mind. erforderlicher Pilotdruck für Veränderung der Verdrängung bei

Gültig bei einem Gegendruck bis zu 50 bar, Ablassdruck bis zu 5 bar Bitte konsultieren Sie uns bei anderen Betriebsbedingungen.

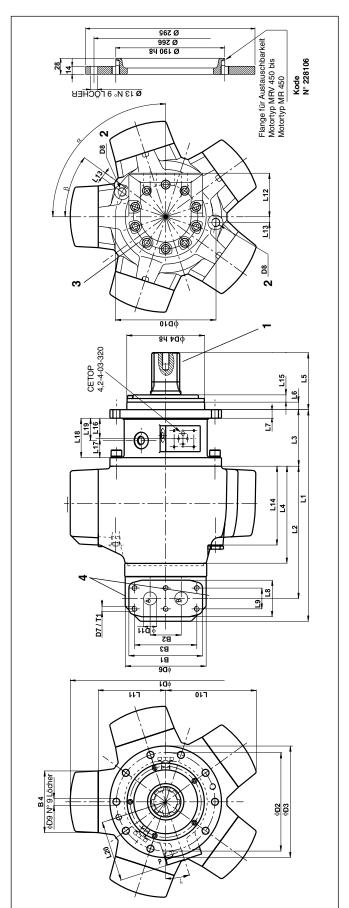


Mind. erforderlicher Ladedruck mit Pumpenbetrieb 30 25 [par] Ladedruck [b

Drehzahl (U/min)

LEBENSDAUER WÄLZLAGER

 L_{10h} ist der theoretische Wert für die Lebensdauer, die von 90% der Wälzlager erreicht oder überschritten wird. 50% aller Wälzlager erreichen den Wert $L_{50h} = 5$ mal L_{10h} .


MOTORTYP	K	MOTORTYP	K	MOTORTYP	K
MRD 300	1120	MRDE 1400	840	MRV 4500	880
MRDE 330	1000	MRVE 1400	840	MRDE 5400	730
MRD 450	1340	MRD 1800	920	MRVE 5400	730
MRV 450	1340	MRV 1800	920	MRD 7000	880
MRDE 500	1215	MRDE 2100	800	MRV 7000	880
MRD 700	1080	MRVE 2100	800	MRDE 8200	680
MRV 700	1080	MRD 2800	1020	MRVE 8200	680
MRDE 800	950	MRV 2800	1020		
MRVE 800	950	MRDE 3100	920		
MRD 1100	1020	MRVE 3100	920		
MRV 1100	1020	MRD 4500	880		

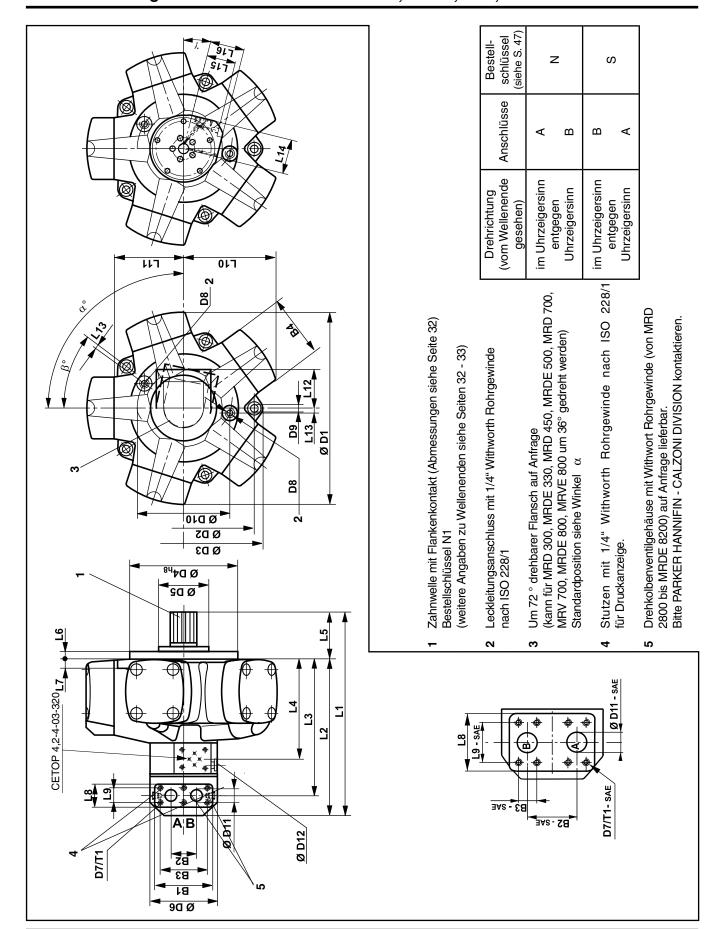
KRAUSE+KÄHLER Hydraulikkompetenz.de +49 (0) 451 - 87 97 740

Katalog HY02-8001/DE **Abmessungen Motor MRV 450**

L20	117
L19	43
L18	92
L17	36,5
L16	152 14 39,5
L15	14
L14	1 152
L13	11
L12	84 11
L11	130
L10	174,5
F3	40
P8	70,4
L7	,5
9 7	14,5
L 5	110
L4	9 187 110 14,5 16
F 3	5 109
L 2	255
_	408
MOTORTYP	MRV 450

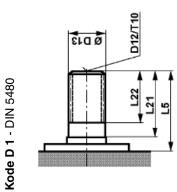
Ø Ø Ø β γ D10 D11 D12 α β γ	
D9 Ø	12 5 107
D7 T1 D8 D9	α/α υ
	2
0 Ø D2 D6	1.00
ο 14 _{h8} *	7
g g	215
0 0	9
۱۵ Ø	898
B4	1
B3	100
B2 B3	9
B1	140
MOTORTYP B1	MBV 450 142 60 120 119 368 190 215

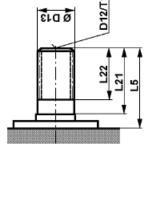
Zahnwelle mit Flankenkontakt

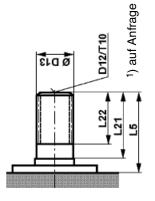

Um 36° drehbarer Flansch auf Anfrage

Stutzen mit 1/4" Withworth Rohrgewinde nach ISO 228/1 für Druckanzeigegerät

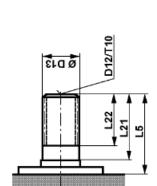
က


KRAUSE+KÄHLER **Hydraulikkompetenz.de** +49 (0) 451 - 87 97 740

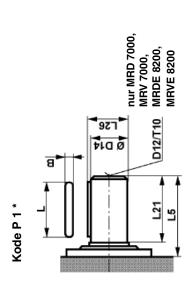

Motortyp MRD, MRDE, MRV, MRVE

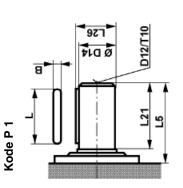

MOTOR TYP	-	7	гз	L4	F2	97	۲٦	87	67	* Nieder- * Ho	SAE * Hoch- druck	L10	111	L12	L13	L14	L15	L16	ಶ	β	λ
MRD 300 MRDE 330	376	295	257	173	81	15	16	54	34	1		153,5	119	72	7,5	70	65	65	。 06	36°	°
MRD 450 MRDE 500	421	324	288	195	26	15	18	11	40	-		174,5	130	84	9,5	70	65	65	。 06	36°	°0
MRDE 800 MRV 700 MRV 800	445	344	308	215	101	15	20	1.2	40	1		192	143	84	8	02	99	65	.06	36°	°0
MRD 1100 MRDE 1400 MRV 1100 MRVE 1400	518	401	353	235	117	20	22	82	50	1	:	223	165	105	6	88	75	88	104°	36°	14°
MRDE 2100 MRV 1800 MRV 2100	566	434	386	268	132	21	24	82	50	1	ŀ	264	197	105	7	88	75	88	°06	36°	14°
MRD 2800 MRDE 3100 MRV 2800 MRVE 3100	629	526	452	317	153	24	56	135	62	69,85	79,4	303	221	123	15	108	84	108	°06	36°	18°
MRD 4500 MRDE 5400 MRV 4500 MRVE 5400	759,5	549,5	478,5	340,5	210	34	28	135	89	77,77	96,82	359,5	255	123	19	108	84	108	108°	36°	18°
MRDE 8200 MRV 7000 MRV 7000 MRVE 8200	856	626	555	417	230	37	30	135	68	77,77	96,82	407,3	310	123	21	108	84	108	108°	36°	18°
* WERTE FÜR DRÜCKE SIEHE SEITE 42, SAE VERBINDUNGSFLANS BITTE PARKER HANNIFIN - CALZONI DIVISION KONTAKTIEREN	I DRÜCKI ER HANN	E SIEHE	SEITE 42 4LZONI D	SAEVE	RONTAK	NGSFLAI FIEREN	NSCHE, (SAE ANG	ABEN IN	CHE, SAE ANGABEN IN PSI AUCH MIT EINHEITSGEWINDE, GROB (UNC), LIEFERBAR.	H MIT EIN	HEITSGE	WINDE, C	ROB (U	NC), LIEF	FERBAR.					

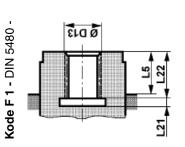
GOTOM		Ľ	B2 - SAE	SAE		B3 - SAE	SAE			٥	6	6	_	6		D7-T1 - SAE	SAE			ď	6	Ø D11 - SAE	\
MOTOR	B1	B2	** Nieder- druck	* Hoch- druck	B3	* Nieder- druck	* Hoch- druck	B 4	<u> </u>	2 2	2 22	D4 _{h8} **	2 2	 2	D7-T1	* Nie- derdruck	* Hoch- druck	D8	6	9 10	2 E	** Nieder- druck druck	
MRDE 330	120	20	1		100	:		9	328 232	232	256	175	06	132	M8-15	1		G 3/8	Ξ	162	20	:	G 1/4
MRD 450 MRDE 500	143	61			120	:		119	368 266	266	296	190	96	132 N	132 M10-18	1		G 3/8	13	194	25	1	G 1/4
MRD 700 MRDE 800 MRV 700 MRVE 800	143	61	:		120	:		133	405 290	290	342	220	102	132 N	102 132 M10-18	:		G 3/8	13	207	25	ı	G 1/4
MRDE 1400 MRV 1100 MRV 1400	162	73	:	ŀ	136	:	:	148	470 330	330	401	250	120	172 N	120 172 M12-21	:	ŀ	G 1/2	15	228	31	;	G 1/4
MRD 1800 MRDE 2100 MRV 1800 MRVE 2100	162	73	:	ŀ	136	:	:	168	558 380	380	466	290	148	172 N	148 172 M12-21	:	:	G 1/2 17	17	266	31	:	G 1/4
MRD 2800 MRDE 3100 MRV 2800 MRVE 3100	233	98	86	101	180	35,7	36,5	190	642 440	440	494	335	140	215 N	140 215 M14-28 M12-30		M16-35 G 1/2 19	G 1/2	19	314	37	37 37	G 1/4
MRD 4500 MRDE 5400 MRV 4500 MRVE 5400	233	116	116	116	200	42,88	44,45	240	766 540	540	297	400D4 _{h7} **		215 N	A16-28	- 215 M16-28 M12-30 M20-34 G 1/2	M20-34	G 1/2	23	380	38	50 50	G 1/4
MRDE 8200 MRDE 8200 MRV 7000 MRVE 8200	233	116	116	116	200	42,88	44,45	264	864 600	009	658,6	658,6 450D4 _{h7} ** 190 215 M16-28 M12-30 M20-34 G 1/2 25	190 ;	215 N	M16-28	M12-30	M20-34	G 1/2	25	450	38	50 50	G 1/4
* WERTE FÜR DRÜCKE SEITE 42, SEA VERBINDUNGSFLANSCHE,	DRÜ	CKE S	SEITE 42, §	SEA VERE	3INDU	NGSFLAN!		E ANG	ABEN	IN PS	il. auch r	SAE ANGABEN IN PSI. auch mit Einheitsgewinde, grob (UNC), lieferbar. Bitte Parker Hannifin - Calzoni Division kontaktieren	winde,	grob (UNC), lief	erbar. Bitte	Parker Ha	nnifin .	Calzo	oni Divi	sion ko	ntaktieren.	



Kode B 1 - BS 3550 - 1)

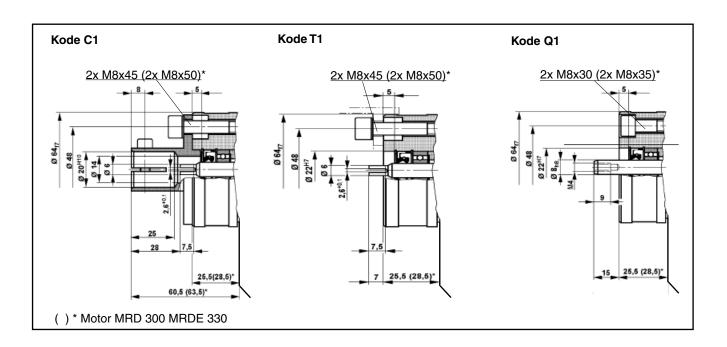

Kode N 1 (Standard)



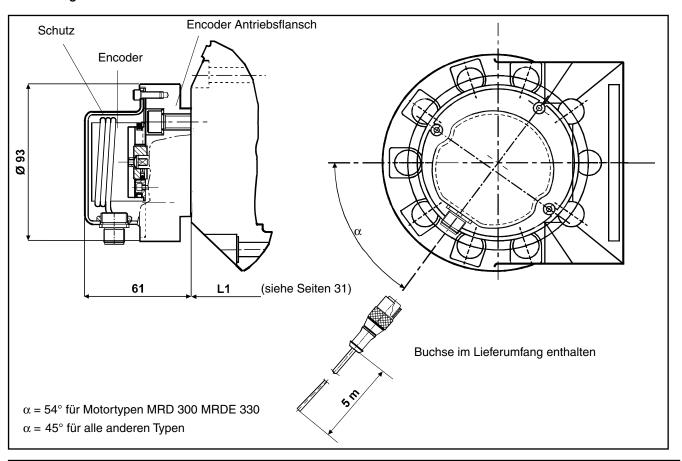

Version				Ę						18						2		
Type	L5	121	L22	D12	T10	ØD13	L5	L21	L22	D12	T10	ØD13	L5	121	L22	D12	T10	ØD13
MRD 300 MRDE 330	81	09	46	M12	25	B8x42x48	81	09	45	M12	25	12/24-21	81	09	46	M12	52	W48x2x22-8e
MRD 450 MRDE 500	97	74	56,5	M12	25	B8x46x54	26	74	61	M12	25	8/16-17	26	74	09	M12	52	W55x3x17-8e
MRV 450 (siehe Seiten 29)	110	74	56,5	M14	22	B8x46x54	-	-	-	-	•	1	110	74	09	M14	22	W55x3x17-8e
MRD 700 MRDE 800 MRV 700 MRVE 800	101	78	62	M12	25	B8x52x60	101	82	62	M12	25	8/16-17	101	78	62	M12	25	W60x3x18-8e
MRD 1100 MRDE 1400 MRV 1100 MRVE 1400	117	88	69	M12	25	B8x62x72	117	88	29	M12	25	6/12-14	117	88	72	M12	25	W70x3x22-8e
MRD 1800 MRDE 2100 MRV 1800 MRVE 2100	132	100	62	M12	25	B10x72x82	132	100	92	M12	25	6/12-20	132	100	80	M12	25	W80x3x25-8e
MRD 2800 MRDE 3100 MRV 2800 MRVE 3100	153	120	66	M12	25	B10x82x92	153	120	92	M12	25	6/12-20	153	120	100	M12	25	W90x4x21-8e
MRD 4500 MRDE 5400 MRV 4500 MRVE 5400	210	173	144	M12	25	B10x102x112	210	173	142,5	M12	25	6/12-20	210	173	144	M12	25	W110x4x26-8e
MRD 7000 MRDE 8200 MRV 7000 MRVE 8200	230	188	150	M12	25	B10x112x125	230	188	153	M12	25	6/12-26	230	188	153	M12	25	W120x4x28-8e
NOTE: Gewindebohrungen (D12/T10) für Wellenendenausfü bitte PARKER HANNIFIN - CALZONI DIVISION kontaktierer	ebohrur 4ANNIF	ngen (E IN - C≜	12/T10 LZONI) für We DIVISK	ellenenc ON kon	denausführunger Itaktieren.	n N1, B	1 und [)1 sind	Wartun	gsbohr	ührungen N1, B1 und D1 sind Wartungsbohrungen. Falls abweichende Bohrungsdurchmesser erforderlich sind. n.	veichen	de Boh	ırungsd	lurchme	esser e	rforderlich sind,

*Maß enthält zwei Passfedern

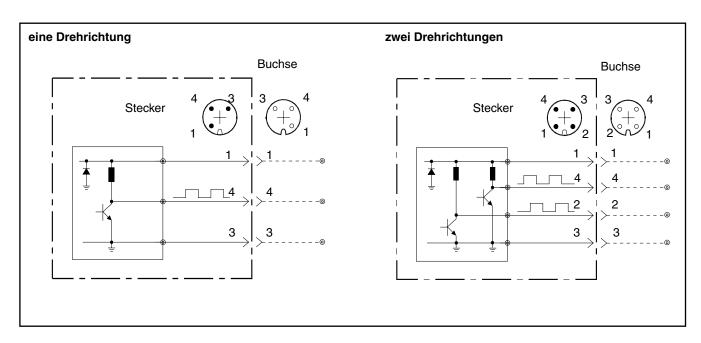
KRAUSE+KÄHLER Hydraulikkompetenz.de+49 (0) 451 - 87 97 740


Type L5 L21 L22 OD13 Sale L2 T10 OD14 Passieder Lx B Obertragenes (Public Tragenes) Obertragenes (Public Tragenes)	Version			표								P1		
27 5 36 NADXZX18-9H 81 60 53,5 M12 25 50 k6 56 x 14 897 28 5 38 NATXZXZ2-9H 170 74 59 M14 22 55 k6 70 x 16 1413 9) 33 5 38 NATXZXZ2-9H 110 74 59 M14 22 55 m6 70 x 16 1413 28 5 44 N55x3x17-9H 101 78 64 M12 25 60 k6 70 x 18 2030 47 8 50 N65x3x20-9H 117 88 76,5 M12 25 80 k6 90 x 22 4020 48 8 57 N75x3x24-9H 132 100 85 M12 25 90 k6 110 x 25 6207 50 14 68 N100x3x322-9H 153 116 M12 25 110 k6 160 x 28 10757 50 14 76 <td< th=""><th>Тур</th><th>L5</th><th>L21</th><th>L22</th><th>ØD13 DIN 5480</th><th>L5</th><th>L21</th><th>L26</th><th>D12</th><th>T10</th><th>ØD14</th><th>Passfeder L x B</th><th>Übertragenes Drehmoment (Nm)</th><th></th></td<>	Тур	L5	L21	L22	ØD13 DIN 5480	L5	L21	L26	D12	T10	ØD14	Passfeder L x B	Übertragenes Drehmoment (Nm)	
28 5 38 NATXEX22-9H 74 59 M12 25 55 km 70 x 16 1413 28 5 38 NATXEX22-9H 110 74 59 M14 22 55 km 70 x 16 1413 28 5 44 N55x3x17-9H 101 78 64 M12 25 60 kG 70 x 18 2030 47 8 50 N65x3x20-9H 117 88 76,5 M12 25 80 kG 70 x 18 2030 47 8 57 N75x3x24-9H 132 100 85 M12 25 80 kG 110 x 25 6200 50 14 68 N100x3x322-9H 153 120 95 M12 25 110 kG 160 x 28 10757 50 14 76 N110x3x35-9H 230 188 138* M12 25 124 bB N°2 180 x 32 28270	MRD 300 MRDE 330	27	2	36	N40x2x18-9H	81	09	53,5	M12	25	50 k6	56 x 14	897	
91 33 5 38 N47x2x22-9H 110 74 59 M14 22 55 m6 70 x 16 1413 28 5 44 N55x3x17-9H 101 78 64 M12 25 60 k6 70 x 18 2030 38 8 50 N65x3x20-9H 117 88 76,5 M12 25 70 k6 80 x 20 2690 47 8 57 N75x3x24-9H 132 100 85 M12 25 80 k6 90 x 22 4020 50 14 68 N100x3x22-9H 153 120 95 M12 25 90 k6 110 x 25 6207 50 14 68 N100x3x32-9H 210 173 116 M12 25 110 k6 160 x 28 10757 50 14 76 N110x3x35-9H 230 188 138* M12 25 124 b8 N*2 180 x 32 28270	MRD 450 MRDE 500	28	5	38	N47x2x22-9H	26	74	59	M12	25	55 K6	70 x 16	1413	
28 5 44 N55x3x17-9H 101 78 64 M12 25 60 k6 70 x 18 2030 38 8 50 N65x3x20-9H 117 88 76,5 M12 25 70 k6 80 x 20 2690 47 8 57 N75x3x24-9H 132 100 85 M12 25 80 k6 90 x 22 4020 50 14 68 N100x3x327-9H 153 120 95 M12 25 90 k6 110 x 25 6207 50 14 68 N100x3x32-9H 210 173 116 M12 25 110 k6 160 x 28 10757 50 14 76 N110x3x35-9H 230 188 138* M12 25 124 b8 N*2 180 x 32 28270	MRV 450 (siehe Seiten 29)	33	2	38	N47x2x22-9H	110	74	59	M14	22	55 m6	70 x 16	1413	
38 8 50 N65x3x20-9H 117 88 76,5 M12 25 70 k6 80 x20 2690 47 8 57 N75x3x24-9H 132 100 85 M12 25 80 k6 90 x22 4020 48 8 62 N85x3x27-9H 153 120 95 M12 25 90 k6 110 x25 6207 50 14 68 N100x3x32-9H 210 173 116 M12 25 110 k6 160 x 28 10757 50 14 76 N110x3x35-9H 230 188 138* M12 25 124 b8 N°2 180 x 32 28270	MRD 700 MRDE 800 MRV 700 MRVE 800	28	5	44	N55x3x17-9H	101	78	64	M12	25	60 k6	70 x 18	2030	HINWEIS:
47 8 57 N75x3x24-9H 132 100 85 M12 25 80 k6 90 x 22 4020 48 8 62 N85x3x27-9H 153 120 95 M12 25 90 k6 110 x 25 6207 50 14 68 N100x3x32-9H 210 173 116 M12 25 110 k6 160 x 28 10757 50 14 76 N110x3x35-9H 230 188 138* M12 25 124 b8 N°2 180 x 32 28270	MRD 1100 MRDE 1400 MRV 1100 MRVE 1400	38	8	50	N65x3x20-9H	117	88	76,5	M12	25	70 k6	80 x 20	2690	bei höhere Drehmomente übertragen werden müssen, bitte PARKER HANNIFIN -
48 8 62 N85x3x27-9H 153 120 95 M12 25 90 k6 110 x 25 50 14 68 N100x3x32-9H 210 173 116 M12 25 110 k6 160 x 28 50 14 76 N110x3x35-9H 230 188 138* M12 25 124 b8 N°2 180 x 32	MRD 1800 MRDE 2100 MRV 1800 MRVE 2100	47	80	57	N75x3x24-9H	132	100	85	M12	25	80 k6	90 x 22	4020	CALZONI DIVISION kontak- tieren.
50 14 68 N100x3x32-9H 210 173 116 M12 25 110 k6 160 x 28 50 14 76 N110x3x35-9H 230 188 138* M12 25 124 b8 N°2 180 x 32	MRD 2800 MRDE 3100 MRV 2800 MRVE 3100	48	∞	62	N85x3x27-9H	153	120	95	M12	25	90 k6	110 x 25	6207	
50 14 76 N110x3x35-9H 230 188 138* M12 25 124 b8 N°2 180 x 32	MRD 4500 MRDE 5400 MRV 4500 MRVE 5400	50	14	89	N100x3x32-9H	210	173	116	M12	25	110 k6	160 x 28	10757	
	MRD 7000 MRDE 8200 MRV 7000 MRVE 8200	20	4	92	N110x3x35-9H	230	188	138*	M12	25	124 b8	N°2 180 x 32	28270	

MECHANISCHER TACHOMETER - ANTRIEB


TACHOGENERATOR - ANTRIEB

ENCODER - ANTRIEB


INKREMENTELLER ENCODER

Abmessungen

INKREMENTELLER ENCODER SCHALTPLÄNE

Adern - Farben und Funktion		
1	BRAUN	NETZANSCHLUSS (8 - 24 V Gleichstrom)
2	WEISS	AUSGANG PHASE B (max. 10 mA - 24 Vcc)
3	BLAU	NETZANSCHLUSS (0 V Gleichstrom)
4	SCHWARZ	AUSGANG PHASE A (max. 10 mA - 24 Vcc)

INKREMENTELLER ENCODER TECHNISCHE DATEN

Encodertyp: ELCIS mod. 478 8 - 24 Vcc Eingangsspannung: Stromverbrauch 120 mA max Stromabgabe max. 10 mA

Ausgangssignal: Phase A - eine Drehrichtung

Phase A und B - zwei Drehrichtungen

Ansprechfrequenz: max. 100 kHz

Anzahl der Impulse: 500 (weitere - max. bis 2540 - auf Anfrage)

> Immer mit der Motorhöchstdrehzahl kompatibel

0 bis 70 °C Betriebstemperatur: Lagertemperatur: -30 bis 70 °C 1,5x109 U/min hohe Lebensdauer Wälzlager

Gewicht: 100 gr Schutzklasse:

IP 67 (mit Schutzeinrichtung und Verbindungselement montiert geliefert)

Steckverbinder:

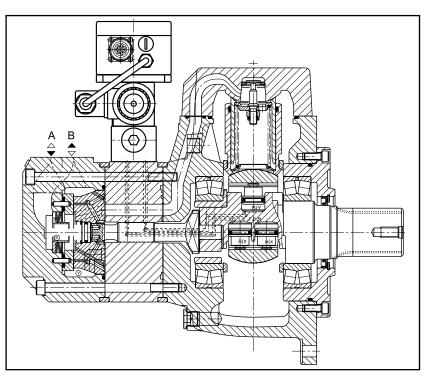
Drehgeschwindigkeit:

EINE DREHRICHTUNG RSF3/0.5 M (Lumberg)

Stecker RKT3-06/5m (Lumberg) **Buchse**

RSF4/0.5 M (Lumberg) **ZWEI DREHRICHTUNGEN** Stecker RKT4-07/5m (Lumberg) **Buchse**

Hinweis: Buchsen mit Kabellängen bis 5 m.


RCE

ALLGEMEINES

Der elektronische Regler Typ RCE wurde für Motortypen MRV/MRVE konstruiert, um die Verdrängung im Verhältnis zu einem der folgenden Referenzwerte zu steuern:

- Verdrängung
- Druck
- Drehzahl

Der RCE Regler regelt beide Drehrichtungen und ein ONOFF Typ, mit aufeinander folgenden integrierten Impulsen. Er ist direkt auf ein 4/3 Wege-Magnetventil (CETOP Größe 6) montiert, das die Verdrängung des Motors vorsteuert. Die Netzspannung beträgt 24 V Gleichstrom oder 24 V gleichgerichteter Wechselstrom.

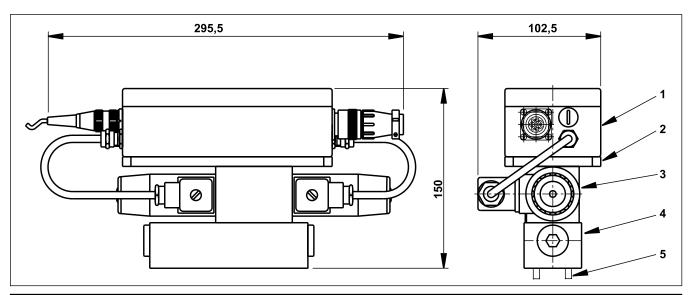
TECHNISCHE DATEN

Eingangsspannung: 24 V \pm 10% gleichgerichtet (Vmax. Höchstwert 35 V) max. erforderliche Leistung: 35 W (60 W bei Verwendung des Magnetausgangs

MAGNETVENTIL C)
Referenzspannung: 0 - 10 V Bereich 2 - 10 V)

Ausgangssignal Verdrängung: 2 - 10 V Druck - Drehzahl Ausgangssignal: 0 - 10 V

Regelungs- und Drehzahleingang

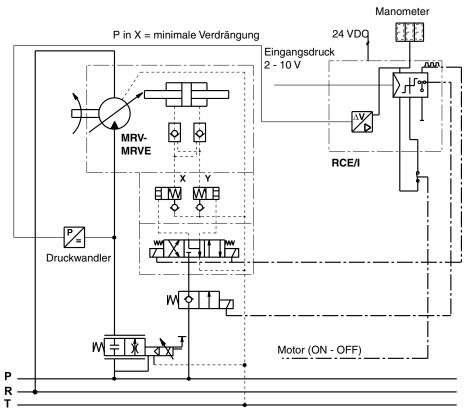

Pulsbefehl: 12 - 24 V (Optokoppler Eingang) Galvanische Isolation zwischen Leistungs- und Steuerungskreisläufen

Umkehrung der Eingangspolaritätsschutzes Ausgangsleistung mit selbstprüfendem MOSFET

IP 64 Schutzklasse CEE standardkonform

ABMESSUNG UND DATEN

- Elektronische Einheit RCE/I-20
- 3 PARKER Ventil
- 5 Gehäuseschrauben
- 2 Mittelplatte
- 4 doppelt wirkendes Dosierventil VDD



Hydraulikkompetenz.de +49 (0) 451 - 87 97 740

RCE

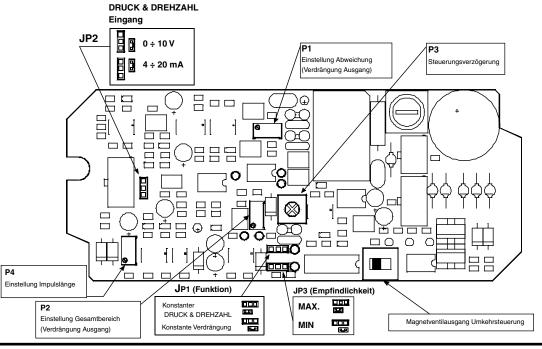
KREISLAUF FÜR MOTOR MIT VARIABLER VERDRÄNGUNG

BESCHREIBUNG

Die Steuerkreisläufe werden von einem DC/DC Gleichstromkonverter, der ein 15 V Gleichstrom Ausgangssignal hat, gespeist, wodurch eine vollständige galvanische Trennung von den 24 V DC Netzkabeln erreicht wird. Das Eingangsreferenzsignal des Reglers wurde für die zu regelnden Werte (Verdrängung, Druck und Drehzahl) auf 2-10 V Gleichstrom gesetzt. Drei integrierte LEDs zeigen den Befehlsstatus (+ oder -) an. Das Pilotöl wird bei jedem Impuls von einem dualen Dosierventil, Typ VDD, das unter dem Magnetventil montiert ist, genau dosiert. Der zu regelnde Parameter kann der RCE/I Regler in drei verschiedenen Regelungsmodi betrieben werden.

KONSTANT VERDRÄNGUNG

Der Hydraulikmotor ist mit einem induktiven Verdrängungswandler (TEC) ausgestattet, der vom Regler gespeist wird und der die aktuelle Lage der Verdrängungselemente bei jeder Motordrehung ausliest und speichert. Über spezielle eingebaute Ventile hält der Motor die voreingestellte Verdrängungsposition konstant. Entsprechend der Grundtendenz von Radialkolbenmotoren geht die Verdrängung unter Last in Richtung Höchstwert. Daher hat der Regler die Aufgabe, den ursprünglichen Wert mit Hilfe einer externen Referenzspannung (Bereich 2 - 10 V Gleichstrom für max. Verdrängung) wieder einzustellen. Die Genauigkeit der aktuellen Verdrängung beträgt ungefähr + 2-3% über dem gesetzten Sollwert. Für Fernablesung der Verdrängung wird ein 2- 10 V Gleichstromausgangssignal ausgegeben, das im Bereich der variablen Motorverdrängung fast linear ist. Ein spezieller Optokoppler-Eingangskreislauf kann mit einem 24 V Gleichstromsignal im Übergangsbetrieb geschaltet werden, um schnell von einem eingestellten Verdrängungswert zum nächsten zu wechseln. Wenn der Regler nur bei laufendem Motor aktiviert werden soll, muss ein spezieller Optokoppler-Eingangskreislauf mit dem 24 V Gleichstromsignal gleichzeitig mit dem Startbefehl geschaltet werden. Ein interner Justierwiderstand sorgt auf Wunsch für eine kurze Verzögerung. Der Regler ist im Normalzustand auf Abgleich bis zu einer Mindestdrehzahl von 60 U/min gesetzt. Bei niedrigeren Drehzahlen bis zu ca. 6 U/min ist es notwendig, einen internen mehrfachdrehenden Justierwiderstand zu verwenden, um die Pausenlängen zwischen den Steuerimpulsen zu verändern. Damit der Messwandler die Verdrängungsposition bei jeder Wellenumdrehung auslesen und im Speicher aktualisieren kann, muss die Pause länger sein, als die Zeit, die der Motor für eine vollständige Umdrehung benötigt.


Motortyp MRD, MRDE, MRV, MRVE

KONSTANTER

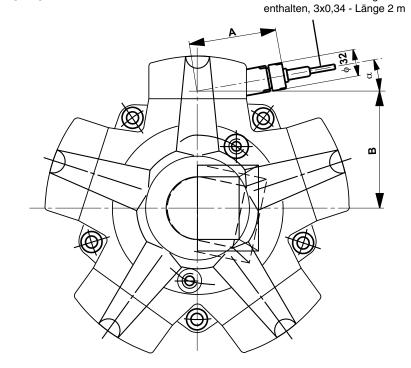
ARBEITSDRUCK MODUS Wenn der Motor in Systemen mit Hydrospeichern betrieben wird und das vom Motor benötigte Drehmoment im Verhältnis zu den Prozessparametern variiert, wird die Verdrängung im Verhältnis zum eingestellten Motorarbeitsdruck gesteuert, sodass der Arbeitsdruck bei variierendem Drehmoment konstant bleibt. Die konstante Druckregelung so dass bei Drehmomentenveränderung innerhalb des zugelassenen Verdrängungsvariationsverhältnisses erzielt werden. Der Hydraulikkreis, der den Motor speist, muss einen Druckwandler enthalten, der vom Regler mit einer 15 V Gleichspannung gespeist wird und ein Ausgangsignal von 0 - 10 V Gleichspannung oder 4-20mA besitzt. Der Hydraulikmotor ist für die Aufrechterhaltung der Verdrängung mit internen Ventilen und einem Umformer für die Verdrängung versehen, damit die aktuelle Verdrängung während der Drehmomentenwechsel ausgelesen weden kann. (Mit Hilfe des Signals für die Verdrängung, dem Druck- und dem Drehzahlsignal können das Drehmoment und die aufgenommene Leistung berechnet werden). Der Druck wird über ein externes Signal mit 0-10 V Gleichspannung (2-10 V Gleichspannung) gesetzt. Der Wert 10 V muss dem vollen Skalenwert (10 V oder 20 mA) des Druckwandler entsprechen. Der minimale Referenzwert beträgt 2 V Geichstrom. Während des Hochfahrens bleibt der Regler für eine Übergangszeit ausgeschaltet (Trimmer). Der Regler wird dann mit einem 24 V Gleichstromeingangssignal eingschaltet. Selbst bei häufigen Anfahr- und Abbremsvorgängen kann der Regler die Motorverdrängung an den durchschnittlichen Druckwert, der während des Laufes gespeichert wurde, angleichen. Das gespeicherte Drucksignal kann ferngesteuert ausgelesen werden und bewegt sich im Bereich von 0-10 V Gleichstrom. Ein dritter 24 V- Gleichstromausgang des Reglers steht für die gleichzeitige Anregung eines 2-Wege Magnetventils mit konischer Membran, welches den aufwärts fließenden Pilotölstrom im 4-Wege Magnetventil unterbricht.

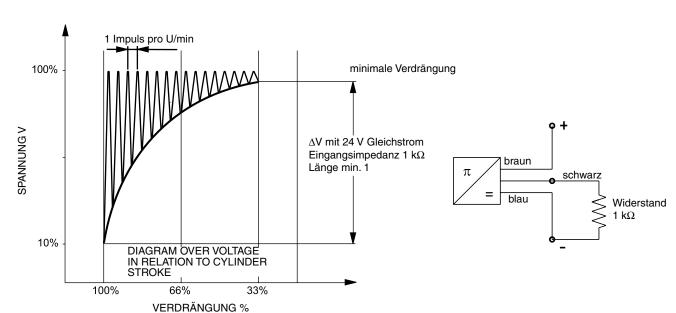
KONSTANTER DREHZAHL BETRIEB

Wenn Mehrstufenkonstantpumpen für den Antrieb des Motors verwendet werden, kann es unter bestimmten Umständen notwendig sein, im Verhältnis zur Motordrehzahl überschüssiges Öl abzuführen. Um diese Verschwendung zu verhindern, kann man einen Motor mit variabler Verdrängung verwenden, der in der Lage ist, den Ölüberschuss durch Anpassung der Verdrängung zu kompensieren. Der Regler verstärkt in diesem Fall das Drehzahlsignal und vergleicht es mit dem Referenzwert. Wenn die Motordrehzahl den eingestellten Wert übersteigt, erhöht der Regler die Verdrängung bis der von der Pumpe kommende Überschuss absorbiert wurde. Gleichzeitig wird der Arbeitsdruck proportional verringert, was der Lebensdauer der Bauteile (Pumpe, Motor etc.) zugute kommt. Dadurch erhält man ein einfaches Drehzahlregelsystem, mit dem keine Energie verlorengeht, da im Regelkreis weder Durchflussregler noch Ablassventile beteiligt sind. Das gespeicherte Drehzahlsignal steht auch als Ausgangsignal für ferngesteuertes Auslesen der Werte im Bereich von 0-10 V Gleichstrom bereit. Dieses Signal kann für die Ermittlung der maximalen Drehzahl verwendet werden, wenn der Motorlauf sehr kurz ist. (< 2 sec). Hier wird die Steuerung wieder über den 24 V Gleichstrom Eingangskreislauf aktiviert. Der Befehl kann durch das Hochfahren des Motors bis zur eingestellten Drehzahl zeitlich verzögert werden. Wenn ein schnelles Schalten der Drehzahl von einem Wert zum anderen erwünscht wird, kann ein spezielles Eingangssignal mit einem 24 V Gleichstromsignal im Übergangsmodus aktiviert werden. Die erzielbare Genauigkkeit dieses Systems schwankt um + - 2% auf der Vollskale bei voller Motorverdrängung. Bei der minimalen Verdrängung ist die Genauigkeit etwas geringer.

Buchse im Lieferumfang

KRAUSE+KÄHLER


MRD, MRDE, MRV, MRVE


Elektronischer messwandler volumenstrom

ELEKTRONISCHER MESSWANDLER VOLUMENSTROM

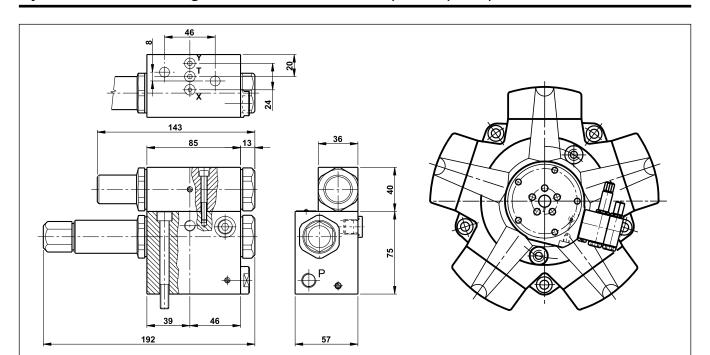
ABMESSUNGEN

MOTOR TYP	Α	В	α
MRV 450	108	135,6	12° 30'
MRV 700 MRVE 800	115,3	147,8	12°
MRV 1100 MRVE 1400	124,6	179	5°
MRV 1800 MRVE 2100	132,3	210	5°
MRV 2800 MRVE 3100	141,2	237,5	5°
MRV 4500 MRVE 5400	155,8	266	7°
MRV 7000 MRVE 8200	200	262	6° 30'

ELEKTRONISCHER MESSWANDLER VOLUMENSTROM TECHNISCHE DATEN

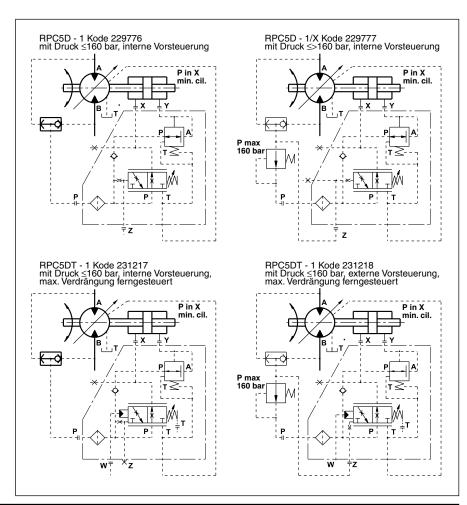
konstanter Höchstdruck 2,5 bar

Eingangsspannung: 18 - 24 V Gleichsapnnung stabilisiert ± 0,5%


10 mA

Stromverbrauch Stromabgabe 1 - 6 mA Betriebstemperaturbereich: 0 bis 60 $^{\circ}\text{C}$ Lastwiderstand: 1 K Ω Messwertablesebereich Verdrängung: 1:3

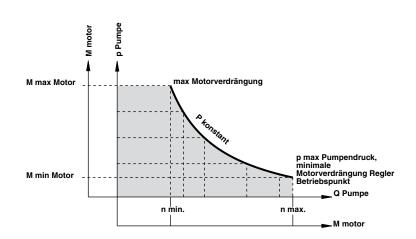
Schutzklasse: **IP 68** Präzision F.S. ± 1%


KRAUSE+KÄHLER

RPC FUNKTIONSBESCHREIBUNG

SCHALTPLÄNE

Der hydraulische RPC Regler hält den Motordruck konstant während der Motor ein veränderliches Drehmoment liefert. Der Druck kann zwischen 50 und 250 bar eingestellt werden.

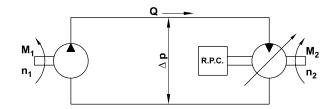

Katalog HY02-8001/DE Hydraulischer Druckregler RPC

RPC

ALLGEMEINES

Durch die Verwendung des MRD-MRDE Motors mit dem Konstantdruck-Regler RPC in Verbindung mit einer Pumpe mit konstanter Verdrängung kann ein System mit konstanter Leistung bei veränderlichem Drehmoment und veränderlicher Drehzahl erzielt werden.

REGELKREIS

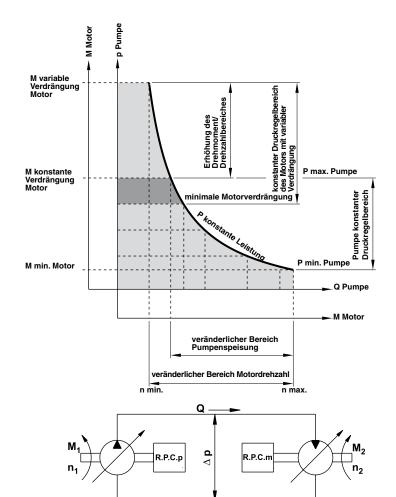


Motortyp

MRD, MRDE, MRV, MRVE

HYDRAULISCHER SCHALTPLAN

RPC = Motor Konstantdruck-Regler P = Q x p max = konstant $M_1 \times n_1 = M_2 \times n_2 = konstant$

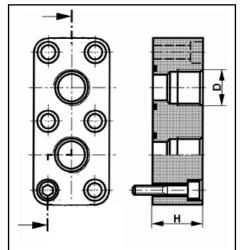


RPC

ALLGEMEINES

Wird die Pumpe mit konstanter Verdrängung gegen eine variable Pumpe mit einem konstanten Regler ausgetauscht, kann man eine Erhöhung des Regelbereiches von Drehmoment und Drehzahl bei konstanter Leistung erzielen.

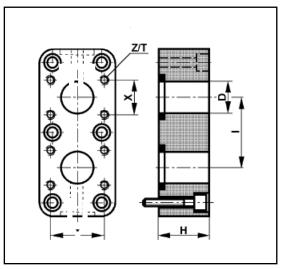
REGELKREIS


HYDRAULISCHER SCHALTPLAN

RPCp = Pumpenregler konstante Leistung RPC = Motor Konstantdruck-Regler $P = M_1 \times n_1 = M_2 \times n_2 = konstant$

Motortyp MRD, MRDE, MRV, MRVE

STANDARD-VERBINDUNGSFLANSCH Kode C1


Flansch wird mit Schrauben und Dichtungen geliefert.

MRD - MRDE MRV - MRVE	D (BSP)	н	BESTELL- SCHLÜSSEL NBR	BESTELL- SCHLÜSSEL FPM		
300 - 330	G 3/4	38	262 098	229 394		
450 - 500 700 - 800	G 1 1/4	39	262 089	229 395		
1100 - 1400 1800 - 2100	G 1 1/2	45	262 093	229 396		
2800 - 3100	G 1 1/2	59	264 572	229 397		
4500 - 5400 7000 - 8200	G 2	58	272 724	229 398		

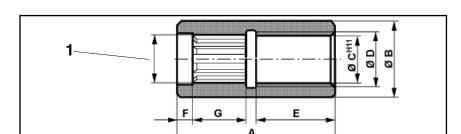
Withworth Rohrgewinde nach ISO 228/1

Bis zu 6000 PSI zulässig

SAE VERBINDUNGSFLANSCH Schlüssel S1 Schlüssel T1 Schlüssel G1 Schlüssel L1

Flansch wird mit Schrauben und Dichtungen geliefert. FPM Dichtungen auf Anfrage.

		С)					МЕ	TRISCH		UN	С
MRD - MRDE MRV - MRVE	SAE PSI		mm	н	I	х	Y	Z/T	BESTELL- SCHLÜSSEL NBR	z	т	BESTELL- SCHLÜSSEL NBR
300 - 330	5000	3/4"	19	38	55	22,2	47,6	M10/25	277 295	3/8"- 16	25	223 335
450 - 500 700 - 800	5000	1"	25	39	60	26,2	52,4	M10/25	277 297	3/8"- 16	25	223 336
1100 - 1400	4000	1 1/4"	31	45	75	30,2	58,7	M10/25	277 299	7/16"- 14	30	223 337
1800 - 2100	6000	1"	25	45	71	27,8	57,15	M12/22	230 166	7/16"- 14	30	342 092
0000 0400	3000	1 1/2"	37	59	86	35,7	69,8	M12/30	277 301	1/2"- 13	30	223 338
2800 - 3100	6000	1 1/2"	37	59	100	36,5	79,4	M16/30	230 168	5/8"- 11	35	349068
4500 - 5400	3000	2"	50	58	112	42,9	77,8	M12/30	277 303	1/2"- 13	30	223 339
7000 - 8200	6000	2"	50	58	116	44,45	96,82	M20/35	230 170	3/4"- 10	38	342 547



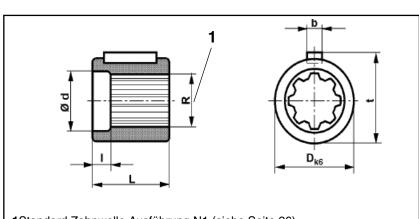
MRD - MRDE

BESTELL-

KRAUSE+KÄHLER Hydraulikkompetenz.de +49 (0) 451 - 87 97 740

KUPPLUNGEN

MRD, MRDE, MRV, MRVE


Α	В	CH11	D	E	F	G		
135	71	49	60	64	15	45		
155	80	55	68	68	18,5	55,5		

1Standard Zahnwelle Ausführung N1 (siehe Seite 26).

Motortyp

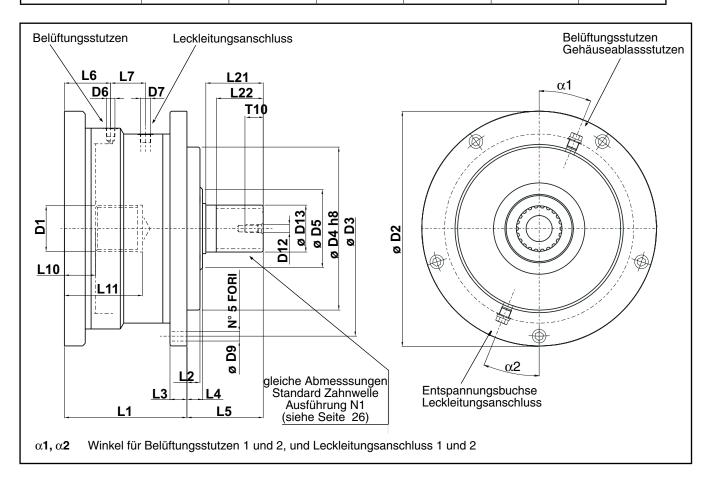
MRV - MRVE **SCHLÜSSEL** 300 - 330 465 202 450 - 500 465 201 5 700 - 800 465 200 171 90 61 75 80 19 59 464 785 1100 - 1400 186 106 73 88,5 85,5 20 65,5 1800 - 2100 465199 224 118 83 98 107 22 78 2800 - 3100 465 198 265 132 93 112 127 23 97 4500 - 5400 474 692 355 150 113 126 30 140 165 7000 - 8200 422 544 390 195 126 140 185 38 147

ADAPTER MIT PASSFEDER

1Standard Zahnwelle Ausführung N1 (siehe Seite 26).

2 Passfeder nach DIN 6885

MRD - MRDE MRV - MRVE	BESTELL- SCHLÜSSEL	R	d	ı	D _{k6}	L	b	t	PASS- FEDER DIN 6885
300 - 330	271 118	A8x42x48	48,3	15	70	60	14	73,5	14x9x56
450 - 500	271 119	A8x46X54	54,3	18,5	80	75	16	84	16x10x70
700 - 800	271 120	A8x52x60	60,3	19	90	80	18	94	18x11x70
1100 - 1400	271 121	A8x62x72	72,3	20	105	98	20	109,5	20x12x90
1800 - 2100	271 122	A10x72x82	82,3	22	118	118	22	123	22x14x110
2800 - 3100	271 123	A10x82x92	92,3	29	130	148	25	135	25x14x140
4500 - 5400	272 719	A10x102x112	112,3	30	160	188	28	166	28x16x180
7000 - 8200	223 476	A10x112x125	125,6	38	185	188	45	195	45x25x180



KRAUSE+KÄHLER

Motortyp MRD, MRV, MRVE

Bremse Abmessungen

BREMSENTYP	B 300	B 450	B 700	B 1100	B 1800	B 2800
MOTORTYP MRD - MRDE MRV - MRVE	300 - 330	450 - 500	700 - 800	1100 - 1400	1800 - 2100	2800 - 3100

BREM- SENTYP	L1	L2	L3	L4	L5	L6	L7	L10	L11	L21	L22	D1	D2	D3	D4 _{h8}	D5	D6	D7	D9	D12	D13	T10	α1	α2	
B 300	136	-	25	15	81	42	39,5	21	86	60	46			256	232	175	-	G1/4"	G3/8'	10,5	M12		28	22°30'	22°30'
B 450	147	-	27	15	97	49,5	36	24	100	74	56,5		296	266	190	-	G1/4"	G3/8'	13,5	M12		28	22°30'	22°30'	
B 700	172	-	28	15	101	55	46	25	105	78	62	siehe S. 32 kompatible	320	290	220	-	G1/4"	G3/8'	13,5	M12	siehe S. 32-33	28	22°30'	22°30'	
B 1100	188	20	26	24	117	71	53,5	48	120	88	72	Schlüssel N1 D1	360	330	250	120	G1/4"	G1/2'	15	M12	Schlüssel N1 D1 F1	28	0°	0°	
B 1800	216	-	28	21	132	63,5	58,5	34	135	100	79		423	380	290	-	G1/4"	G1/2'	17,5	M12		28	22°30'	22°30'	
B 2800	263	-	30	24	153	87	67	42,5	165	120	99		494	440	335	-	G1/4"	G1/2'	19	M12		28	22°30'	22°30'	

KRAUSE+KÄHLER

Haltebremse technische Daten

Motortyp MRD, MRDE, MRV, MRVE

TECHNISCHE DATEN (bei Betrieb außerhalb dieser Parameter bitte PARKER HANNIFIN - CALZONI DIVISION konsultieren.

MERVALE		BREMSENTYP									
MERKMALE		B 300	B 450	B 700	B 1100	B 1800	B 2800				
STATISCHES BREMSMOMENT	Nm	1800	2650	4000	6200	11400	17100				
DYNAMISCHES BREMSMOMENT	Nm	1200	1450	2200	4200	6250	12000				
BREMSENLÖSEDRUCK	bar	28	27	27	27	30	30				
MAX. BETRIEBSDRUCK	bar	420	420	420	420	420	420				
TRÄGHEITSMOMENT ROTIERENDER TEILE	kgm ²	0,0062	0,029	0,043	0,061	0,20	0,27				
GEWICHT	kg	39	54	74	100	158	262				
MOTORTYP MRD - MRDE - MRV - MRVE		300 330	450 500	700 800	1100 1400	1800 2100	2800 3100				

SCHLÜSSEL Bespiel: BREMSE - B 450 N1 N1 V1 **

1. BREMSE - B 450 N1 N1 V1 **

BREMSENTYP

B 300	Bremse für Motorgröße D
B 450	Bremse für Motorgröße E
B 700	Bremse für Motorgröße F
B 1100	Bremse für Motorgröße G
B 1800	Bremse für Motorgröße H
B 2800	Bremse für Motorgröße I

2. BREMSE - B 450 N1 N1 V1 **

ABGANGSWELLE

N1	Zahnwelle ex DIN 5463 (siehe Seite 30)						
D1 *	Zahnwelle DIN 5480 (siehe Seite 30)						
F1 *	Zahnnabe DIN 5480 (siehe Seite 31)						
* bitte PARKER HANNIFIN - CALZONI DIVISION kontaktieren.							

3. BREMSE - B 450 N1 **N1** V1 ** **EINGANGSWELLE**

N1	Hohlwelle für Motortyp N1 (siehe Seite 30)
D1 *	Hohlwelle für Motortyp D1 (siehe Seite 30)

4. BREMSE - B 450 N1 N1 V1 **

DICHTUNGEN

N1	NBR: Mineralöl						
V1 *	FPM Dichtungen						
U1	Keine Wellendichtung (für Bremse)						
* bitte PARKER HANNIFIN - CALZONI DIVISION kontaktieren							

5. BREMSE - B 450 N1 N1 V1 ** Spezial

**	Platz für PARKER HANNIFIN - CALZONI DIVISION
	reserviert

Motortyp MRD, MRDE, MRV, MRVE

Montage

jede Einbauposition

- Beachten Sie die Position des Leckleitungsanschlusses (siehe unten)

Installieren Sie den Motor richtig

- Installationsfläche muss eben und biegesteif sein.

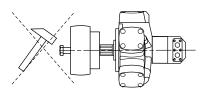
Mindestzugfestigkeit der Schrauben nach DIN 267 Teil 3 Klasse 10.9

 Beachten Sie das vorgeschriebene Anzugsmoment

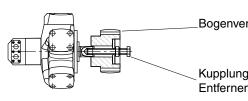
Rohre, Rohrverbindungen

Verwenden Sie passende Schrauben!

 In Abhängigkeit des Motoryps entweder Schrauboder Flanschverbindung verwenden

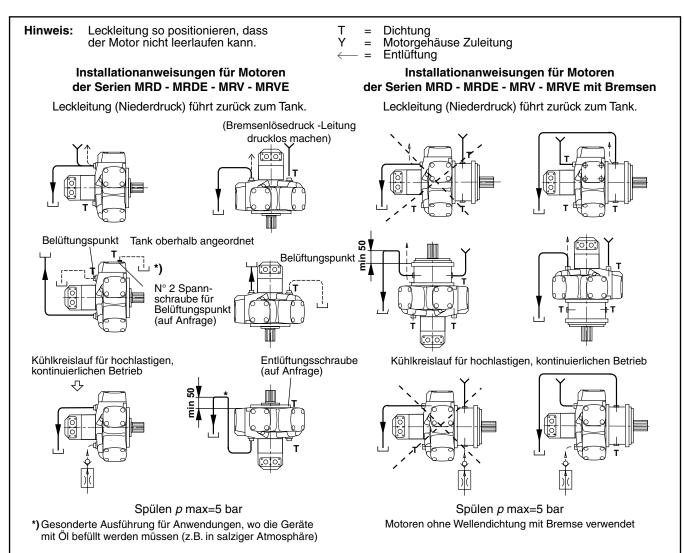

Für die Installation passende Schläuche und Rohre verwenden

- Beachten Sie die Herstellerangaben!


Vor der Inbetriebnahme mit Druckflüssigkeit befüllen

- Vorgeschriebenen Filter verwenden!

Kupplung


- Für die Installation Schrauben verwenden
- Gewindebohrung in der Antriebswelle verwenden
- Mit Abziehvorrichtung demontieren

Bogenverzahnte Kupplungsnabe

Kupplungsnabe zum Entfernen abschrauben

LECKLEITUNGEN UND SPÜLLEITUNGEN - INSTALLATIONSBEISPIELE

Katalog HY02-8001/DE **Bestellschlüssel:**

Motortyp MRD, MRDE, MRV, MRVE

SCHLÜSSEL

1. **MRD** 700 F 240 N1 M1 F1 N1 N **

BAUREIHE

2. MRD 700 F 240 N1 M1 F1 N1 N **

GRÖSSE UND VERDRÄNGUNG

3. MRD 700 F 240 **N1** M1 F1 N1 N **

WELLE

4. MRD 700 F 240 N1 M1 F1 N1 N **

DREHAZHLSENSOR OPTION

5. MRD 700 F 240 N1 M1 **F1** N1 N **

DICHTUNGEN

6. MRD 700 F 240 N1 M1 F1 **N1** N **

VERBINDUNGSFLANSCH

7. MRD 700 F 240 N1 M1 F1 N1 **N** ** **DREHRICHTUNG**

8. MRD 700 F 240 N1 M1 F1 N1 N ** **Spezial**

Bespiel: MRD 700 F 240 N1 M1 F1 N1 N *	Besp	iel: MR	D 700	F 240 I	N1 M1	F1	N1	Ν	**
--	------	---------	-------	---------	-------	----	----	---	----

MRD Standard 250 bar max. kontinuierlich	
MRDE erweitert 210 bar max. kontinuierlich	
MRV	Standard 250 bar max. kontinuierlich
MRVE	erweitert 210 bar max. kontinuierlich

D	KODE	MF 300 E	RD 0 150		DE 0 165				
_	cm ³	304,1	152,1	332,4	166,2				
Е	KODE	MRD 450 D 225		MRDE 500 E 250		MRV 450 E 133			
_	cm ³	451,6	225,8	497,9	248,9	451,6	133,5		
F	KODE	MF 700 F	RD = 240		DE 5 270	700 F	RV = 240	MR 800 F	
	cm ³	706,9	237,6	804,2	270,2	706,9	237,6	804,2	270,2
G	KODE	MF 1100	RD G380		DE E 470	1100	RV G 380	MR 1400	
	cm ³	1125,8	381,3	1369,5	463,9	1125,8	381,3	1369,5	463,9
н	KODE	MF 1800	RD H 600	MR 2100	DE H 700	MI 1800	RV H 600	MR 2100	
	cm ³	1809,6	603,2	2091,2	697,0	1809,6	603,2	2091,2	697,0
	KODE	MF 2800			DE I 1030	MI 2800	RV I 930	MR 3100 I	
_	cm ³	2792,0	930,7	3103,7	1034,6	2792,0	930,7	3103,7	1034,6
L	KODE	MF 4500 L	RD _ 1500		DE _ 1800	MI 4500 L	RV _ 1500	MR 5400 L	
	cm ³	4502,7	1497,8	5401,2	1800,4	4502,7	1497,8	5401,2	1800,4
М	KODE	MF 7000 N	RD // 2320		DE /I 2750	7000 N	RV /1 2320	MR 8200 N	
	cm ³	6967,2	2322,4	8226,4	2742,1	6967,2	2322,4	8226,4	2742,1

N1	Zahnwelle ex DIN 5463 (siehe Seite 32)
D1	Zahnwelle ex DIN 5480 (siehe Seite 32)
F1	Zahnnabe DIN 5480 (siehe Seite 33)
P1	Welle mit Passfeder (siehe Seite 33)
B1	Zahnwelle B.S. 3550 (siehe Seite 32)

N1	keine		
Q1	Encoder Antrieb (siehe Seite 34)		
C1	mechanischer Tachometerantrieb (siehe Seite 34)		
T1	Tachogeneratorantrieb (siehe Seite 34)		
M1	Inkrementeller Elcis Encoder	eine Drehrichtung	
B1	(500 Impulse/U) (siehe Seite 34)	zwei Drehrichtungen	

	N1	NBR Mineralöl
	F1	NBR, 15 bar Wellendichtung
	V1	FPM Dichtungen
ĺ	U1	keine Wellendichtung (für Bremse)
- 7		

N1	keine
C1	Standard PARKER HANNIFIN CALZONI DIVISION (siehe S 42)
S1	Standard SAE metrisch (siehe Seite 42)
T1	Standard SAE Einheitsgewinde grob (UNC) (siehe Seite 42)
G1	SAE 6000 psi metrisch (siehe Seite 42)
L1	SAE 6000 psi Einheitsgewinde grob (UNC, siehe Seite 42)
S3	Standard SAE metrisch Motor integriert (siehe Seite 31)
G3	SAE 6000 psi metrisch Motor integriert (siehe S. 31)
N	Standarddrehrichtung (im Uhrzeigersinn: Einlass A, entgegen Uhrzeigersinn: Einlass B)
s	umgekehrte Drehrichtung (im Uhrzeigersinn Einlass B, entgegen Uhrzeigersinn: Einlass A)

Platz für PARKER HANNIFIN - CALZONI DIVISION reserviert

