

LKW-Hydraulik

Serie GPA, GP1, F1, T1, F2, F3, VP1 Konstantes und variables Verdrängungsvolumen Pumpen, Motoren und Zubehör

Änderungsverlauf Ausgabe 01.2017

Seiten 9, 42-46: F3-Pumpe wurde hinzugefügt

Seite 53: Bestellnummern für schwarz lackierte VP1 Pumpen wurden hinzugefügt

Seiten 59-64 BPV für F1, T1 und für F2 verändert. Neues Design der Nothandbetätigung.

Seiten 49 und 52: Schwerpunkt verändert, VP1. Seiten 17, 19-21: Neue GP1-Pumpenserie.

Seite 76: Neue Bilder für GPA und GP1

Seiten 51, 52 und 67: LS-Regler mit alternativem Leckölanschluss T.

Seiten 23 und 40: Massenträgheitsmoment Seiten 59 und 61: BPV-F1 und BPV-F2

Auf unserer Webseite, <u>www. parker.com/pmde</u>, Finden Sie: 2D & 3D Abmessungen, Installations- und Inbetriebnahmeanleitung, Service-Handbücher, Ersatzteile

Umrechnungsfaktoren

1 kg	2,20 lb
1 N	0,225 lbf
1 Nm	0,738 lbf ft
1 bar	14,5 psi
1	0,264 US gallon
1 cm ³	0,061 cu in
1 mm	0,039 in
⁹ / ₅ °C + 32	1°F
S .	1,34 hp

ACHTUNG — VERANTWORTUNG DES ANWENDERS

VERSAGEN ODER UNSACHGEMÄßE AUSWAHL ODER UNSACHGEMÄßE VERWENDUNG DER HIERIN BESCHRIEBENEN PRODUKTE ODER ZUGEHÖRIGER TEILE KÖNNEN TOD, VERLETZUNGEN VON PERSONEN ODER SACHSCHÄDEN VERURSACHEN.

Dieses Dokument und andere Informationen von der Parker-Hannifin Corporation, seinen Tochtergesellschaften und Vertragshändlern enthalten Produkt- oder Systemoptionen zur weiteren Untersuchung durch Anwender mit technischen Kenntnissen.

Der Anwender ist durch eigene Untersuchung und Prüfung allein dafür verantwortlich, die endgültige Auswahl des Systems und der Komponenten zu treffen und sich zu vergewissern, dass alle Leistungs-, Dauerfestigkeits-, Wartungs-, Sicherheits- und Warnanforderungen der Anwendung erfüllt werden. Der Anwender muss alle Aspekte der Anwendung genau untersuchen, geltenden Industrienormen folgen und die Informationen in Bezug auf das Produkt im aktuellen Produktkatalog sowie alle anderen Unterlagen, die von Parker oder seinen Tochtergesellschaften oder Vertragshändlern bereitgestellt werden, zu beachten.

Soweit Parker oder seine Tochtergesellschaften oder Vertragshändler Komponenten oder Systemoptionen basierend auf technischen Daten oder Spezifikationen liefern, die vom Anwender beigestellt wurden, ist der Anwender dafür verantwortlich festzustellen, dass diese technischen Daten und Spezifikationen für alle Anwendungen und vernünftigerweise vorhersehbaren Verwendungszwecke der Komponenten oder Systeme geeignet sind und ausreichen.

Verkaufs-Angebot

Wenden Sie sich bitte wegen eines ausführlichen Verkaufs-Angebotes an Ihre Parker-Vertretung.

Katalog MSG30-8200/DE **Inhalt**

LKW-Hydraulik Pumpen und Motoren

Allgemeines	Allgemeines	
Konstruktion und Anwendungen	Seite 4 - 11	1
Auswahl der Pumpe und Hydraulikleitungen Einbauanweisung	Pumpe und Hydraulikleitungen Seite 12 - 15	2
GPA und GP1 konstantes Verdrängungsvolumen - Zahnradpumpen	GPA und GP1 Sidorna 16 - 21	3
F1 Pumpe konstantes Verdrängungsvolumen- Schrägachsenpumpe. ISO und SAE	F1 Seite 22 - 32	4
T1 Pumpe konstantes Verdrängungsvolumen - Schrägachsenmotor	T1 Seite 33 - 36	5
F1 Motor konstantes Verdrängungsvolumen - Schrägachsenmotor	F1 Seite 37 - 38	6
F2 Zweikreispumpe konstantes Verdrängungsvolumen - Schrägachsenpumpe	F2 Seite 39 - 41	7
F3 Pumpe konstantes Verdrängungsvolumen - Schrägachsenpumpe	F3 Seite 42 - 46	8
VP1 Pumpe variables Verdrängungsvolumen - Schrägachsenpumpe	VP1 Seite 47 - 54	9
BLA Fördereinheit	BLA Seite 55	10
Anschlüsse Sauganschlüsse und Nippelsätze	Anschlüsse Seite 56 - 57	11
Hilfsventile Bypass-Ventile, Kurzschlussventil	Hilfsventile Seite 58 - 67	12
Zubehör Betätigungssatz für Nebenabtriebe (PTO), PTO Adaptersatz, Kardanwe Pumpenkupplung, Montagesätze, Verteilergetriebe SB	Zubehör ellen, Seite 68 - 74	13

Einbau und Inbetriebnahme

GPA, GP1, F1, T1, F2, F3 und VP1

Seite 75 - 79

Einbau und Inbetriebnahme

GPA und GP1 Pumpen

Leichte und mittelschwere Pumpen

Die LKW-Zahnradpumpen von Parker sind die ideale Lösung für die Halter von leichteren LKW, die eine qualitativ hochwertige Lösung zur Abdeckung ihres Hydraulikbedarfs suchen.

Die Zahnradpumpen der Baureihen GP1/GPA sind in diversen Größen für alle erdenklichen Anwendungsbereiche erhältlich. Sie sind leicht und kompakt und lassen sich dank ihrer doppelten Anschlüsse sowohl seitlich als auch hinten anschließen

Die kleinere Baureihe GPA hat ein extrudiertes Aluminiumgehäuse zur Minimierung des Gewichts.

Die größeren GP1-Pumpen haben Gehäuse aus kompaktem Gusseisen von hoher Festigkeit.

Unser erweitertes Zahnradpumpen-Programm ergänzt unser Hochleistungs-Sortiment an Kolben- und Flügelzellen-Pumpen.

Die Leistungsmerkmale dieser Niedrigpreis-Alternative sind ideal für leichte und/oder intermittierende Anwendungen, wobei an der berühmten Parker-Zuverlässigkeit keinerlei Abstriche gemacht wurden.

Die Pumpen wurden im Hinblick auf eine lange und problemfreie Lebensdauer entwickelt – wie Sie es von einem Parker-Produkt erwarten dürfen.

- Kompakt und leicht problemlose Installation auch bei kleinen Fahrzeugen!
- Leiser Betrieb geringe Geräuschentwicklung in empfindlichen Anwendungen!
- Robust und zuverlässig lange, problemfreie Lebensdauer!
- Für hohe Drehzahlen konzipiert weniger anfällig für hohe Drehzahlen!
- Umkehrbare Drehrichtung installationsfreundlich!
- Seitlicher/Rückseitiger Anschluss doppelte Anschlüsse bieten Wahlfreiheit!

Siehe Seite 16

Serie GPA

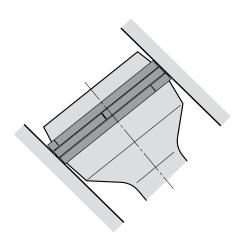
Serie GP1

F1 Pumpe ISO

Die Serie F1 ist die Weiterentwicklung unserer wohlbekannten "LKW-Pumpe" F1. Die F1 bietet viele zusätzliche Vorteile für Ladekräne, Absetzkipper, Abrollkipper, Forstkräne, Beton-mischer und andere LKW-Anwendungen.

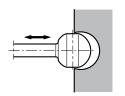
Die Serie F1 ist eine wirkungsvolle Hydropumpe, deren unkomplizierte Konstruktion unübertroffene Zuverlässigkeit verspricht.

Die geringen Einbaumaße erlauben einen einfachen und wirtschaftlichen Einbau.


Eigenschaften für F1:

- Erhöhte Selbstsaugdrehzahl
- Betriebsdruck bis 400 bar
- · Verbesserter Wirkungsgrad
- Reduzierter Geräuschpegel
- Kleine Einbaumaße
- Niedriges Gewicht

Diese Vorteile erreichen wir durch:


- 45° Schwenkwinkel
- Optimierte Enddeckel-Konstruktion
- Gehäuse aus durchgehendem Gußstück
- Sphärische Kolben hohe Drehzahlen
- Lamellen-Kolbenringe geringe Leckage
- Zahnradsynchronisierung
- Montage oberhalb des Ölbehälters möglich
- Unempfindlich gegen rasche Temperaturwechsel
- Wellenende und Anbauflansch entsprechen den gültigen ISO-Normen

F1-Kolben mit Lamellen-Kolbenring.

Siehe Seite 22

F1-Kolbensicherung.

F1 Pumpe SAE

Eigenschaften:

- Lamellen-Kolbenringe geringe Leckage
- Zahnradsynchronisierung
- Betriebsdruck bis 350 bar
- Montage oberhalb des Ölbehälters möglich
- Unempfindlich gegen rasche Temperaturwechsel
- Wellenende und Anbauflansch entsprechen den gültigen SAE-B-Normen
- Nenngröße: -25 / -41 / -51 / -61 cm³/U

Siehe Seite 30

F1 Motor ISO

Eigenschaften:

- · Lamellen-Kolbenringe geringe Leckage
- Zahnradsynchronisierung
- · Betriebsdruck bis 250 bar
- Montage oberhalb des Ölbehälters möglich
- Unempfindlich gegen rasche Temperaturwechsel
- Wellenende und Anbauflansch entsprechen den gültigen ISO-Normen
- Unempfindlich gegen hohe Beschleunigungen

Siehe Seite 37

T1 Pumpe

Die neue T1 Pumpe mit konstantem Verdrängungsvolumen ist speziell entwickelt worden, um den Ansprüchen der LKW-Anwendungsfälle mit kurzen Arbeitszyklen wie z B Kipper, Leichtkrane etc. zu entsprechen. Die Ausführung ist ähnlich der Reihe F1, nur ist

T1 noch kleiner gehalten. T1 ist analog unserem bekannten 45° Konzept mit Lamellen-Kolbenringen und sphärischen Kolben aufgebaut. Dadurch erreicht man einen hohen volumetrischen und mechanischen Wirkungsgrad. Auf Grund weniger Konstruktionsteile wird eine außerordentliche Zuverlässigkeit erreicht.

- Antriebsleistung bis 71 kW
- Drehzahl bis 2300 U/min
- Arbeitsdruck bis 350 bar
- Hoher Gesamtwirkungsgrad
- Niedriges Gewicht
- Kleine Einbaumaße
- Robuste Konstruktion

Die T1 ist in ihren Anbaumaßen dem europäischen Standard angepaßt und an alle marktüblichen LKW-Nebenabtriebe direkt anflanschbar.

Passende Nebenabtriebe können Sie von Parker Hannifin beziehen.

Siehe Seite 33

Typische Anwendungen für T1

- Frontlader
- Hydraulisches System selten verwendet und mit kurzen Zykluszeiten.

Zweikreispumpe Serie F2

Die Serie F2 ist die Weiterentwicklung unserer Zweikreispumpe Serie F2, der ersten Pumpe in Schrägachsen-Bauart mit zwei voneinander unabhängigen Förderströmen.

Bei passendem Aufbau des Hydrauliksystems bietet die Zweikreis-pumpe den Vorteil von drei unterschiedlich großen Förderströmen bei ein und derselben Motordrehzahl.

Die Zweikreispumpe ermöglicht die Optimierung des Hydrauliksystems und bietet folgende Vorteile:

- Gesenkter Energieverbrauch
- Reduzierte Überhitzungsgefahr
- Geringes Gewicht
- Einfacher Einbau
- Genormte Systemlösungen.

Mit der Zweikreispumpe lassen sich zwei Betriebsfunktionen unabhängig voneinander betätigen, was schnelleres und präziseres Arbeiten ermöglicht. Gewisse Anwendungen fordern einen großen und einen kleinen Förderstrom bzw. zwei gleichgroße Förderströme. Die Zweikreispumpe ist in beiden Fällen die richtige Lösung.

Es besteht auch die Möglichkeit, bei hohem Arbeitsdruck nur einen Förderstrom der Pumpe zu nutzen. Bei Druckabfall kann der Förderstrom des zweiten Kreises zugeschaltet werden. Dadurch wird die Überbelastung des Nebenabtriebs vermieden und gleichzeitig eine optimale Funktion erzielt.

Typische Anwendungen für Zweikreispumpen

- Große Ladekrane
- Forstkrane
- Abrollkipper/Silosteller
- Kipper in Kombination mit Kran
- Müllwagen

Das Wellenende und der Anbauflansch entsprechen der ISO-Norm und eignen sich für die Direktmontage am Nebenabtrieb.

Katalog MSG30-8200/DE **Allgemeines**

F3 Pumpe ISO

Die neue Pumpe F3 ist eine Weltneuheit in der Mobilhydraulik. Die integrierte Kupplung ermöglicht das Ein- und Auskuppeln der Pumpe am laufenden Motornebenabtrieb und führt daher zu Kraftstoffeinsparungen. So kann außerdem der Verschleiß der Pumpe sowie das Risiko kostspieliger Ausfälle gesenkt werden. All dies geschieht allein durch Knopfdruck bei laufendem Dieselmotor!

Kraftstoff sparen!

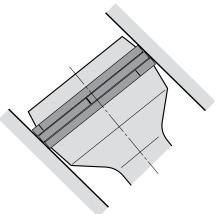
Bei einer jährlichen Laufleistung von 100.000 km kann die Einsparung zwischen 200 und 300 Litern Diesel betragen. Die entsprechende Reduzierung der Emission von Treibhausgasen und Partikeln wird allein durch Abschalten der F3-Pumpe bei Nichtgebrauch erreicht. Diese einzigartige, patentierte Funktion wird jetzt von Parker Hannifin auf den Markt gebracht.

Erhöhte Betriebssicherheit!

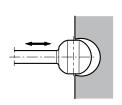
Für den äußerst unwahrscheinlichen Fall des Ausfalls des hydraulischen Systems (z. Bsp. Schlauchbruch) haben wir weiter gedacht. Um zu verhindern, dass das komplette Fahrzeug in die Werkstatt überführt werden muss, haben wir eine Vorrichtung konstruiert, mit der die F3-Pumpe durch die einfache Bedienung am Versorgungsanschluss vom Motornebenabtrieb abgetrennt werden kann. Das Fahrzeug kann – ohne einen Abschleppdienst zu rufen – in die Werkstatt fahren. Dadurch werden hohe Kosten durch Ausfallzeiten verhindert!

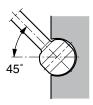
Reduzierter Geräuschpegel!

Im Vergleich zu einer konventionellen Pumpe im Bypass-Betrieb generiert die abgeschaltete F3-Pumpe deutlich geringere Geräusche. Die Erfüllung zukünftiger Lärmauflagen wird hiermit erreicht.


Eigenschaften für F3:

- Ein- und Auskuppeln der Pumpe
- · Pneumatisch gesteuert
- Erhöhte Selbstsaugdrehzahl
- Betriebsdruck bis 400 bar
- · Verbesserter Wirkungsgrad
- Reduzierter Geräuschpegel
- Kleine Einbaumaße
- · Niedriges Gewicht


Siehe Seite 42


Siehe auch http://solutions.parker.com/F3

F3-Kolben mit Lamellen-Kolbenring.

F3-Kolbensicherung.

Diese Vorteile erreichen wir durch:

- Die integrierte Kupplung ermöglicht das Ein- und Auskuppeln der Pumpe
- 45° Schwenkwinkel
- Optimierte Enddeckel-Konstruktion
- Sphärische Kolben hohe Drehzahlen
- Lamellen-Kolbenringe geringe Leckage
- Zahnradsynchronisierung
- Montage oberhalb des Ölbehälters möglich
- Unempfindlich gegen rasche Temperaturwechsel
- Wellenende und Anbauflansch entsprechen den gültigen ISO-Normen

VP1 Pumpe

LKW-Hydraulik **Pumpen und Motoren**

Die VP1 ist die erste LKW-Pumpe der Welt mit variab-

lem Verdrängungsvolumen. Sie läßt sich direkt an den Nebenabtrieb montieren und ist eigens für hydraulische Systeme konzipiert, in denen ein variables Verdrängungsvolumen von Vorteil ist.

Ein Anwendungsbereich, bei dem die Vorteile der VP1 voll zum Tragen kommen, sind LKW-Krane mit Load-Sensing-System. Die komplexen Hydrauliksysteme von z.B. Müllabfuhr- und Schlammsaugfahrzeugen sowie verschiedene Kombinationen aus Kippern, Kranen, Schnee-pflügen, Sand- bzw. Salzstreufahrzeugen usw. können mit der VP1 erheblich vereinfacht und optimiert werden.

Die VP1 versorgt das hydraulische System mit dem richtigen Durchfluß zum richtigen Zeitpunkt, was den Energieverbrauch und die Hitzeentwicklung wirkungsvoll reduziert. Dadurch arbeitet das Hydrauliksystem leiser, sanfter und umweltfreundlicher.

Die VP1 besticht durch ihren hohen Wirkungsgrad und ihr geringes Gewicht. Sie ist außerdem sehr zuverlässig, wirtschaftlich und leicht zu installieren.

Die fünf Pumpengrößen, VP1-045, -075, -095, -110 und -130 haben Dieselben, kleinen Einbaumaße.

Großer Winkel - kompakte Bauweise

Die Konstruktion ermöglicht einen großen Winkel von 20° zwischen Kolbentrommel und Schrägscheibe, was zu einer kompakten Pumpe mit kleinen Außenabmessungen führt.

Reihenschaltung

Die durchgehende Welle für Nenngröße -045 und -075 ermöglicht den Anbau einer gleichen Pumpe oder wie z.B. eine F1-Pumpe mit konstantem Verdrängungsvolumen.

Lange Lebensdauer

Die VP1 ist für LKW mit Load-Sensing-Hydrauliksystem konzipiert. Sie ist ausgesprochen robust, aber dennoch einfach konstruiert und hat wenige bewegliche Teile. Das Ergebnis ist eine zuverlässige Pumpe mit langer Lebensdauer.

Siehe Seite 47

Die VP1 eignet sich für alle Fabrikate von Load-Sensing -Systemen.

Neue Eigenschaften

- Variables Verdrängungsvolumen
- Niedriger Geräuschpegel
- Hohes Leistungs-/Gewicht-Verhältnis
- Kompakte, leichte Bauweise
- Hoher Wirkungsgrad
- Robuste Konstruktion
- Hält niedrigen Temperaturen stand
- Eignet sich für Direktmontage und Reihenschaltung (Reihenschaltung nur für -045 und -075)

Rückholplatte

Die Rückholplatte (siehe Querschnittzeichnung auf Kapitel 8) ist sehr robust konstruiert und hält hohen Drehzahlen und schnellen Geschwindigkeits-wechseln stand.

Hydraulikkompetenz.de +49 (0) 451 - 87 97 740

Allgemeines

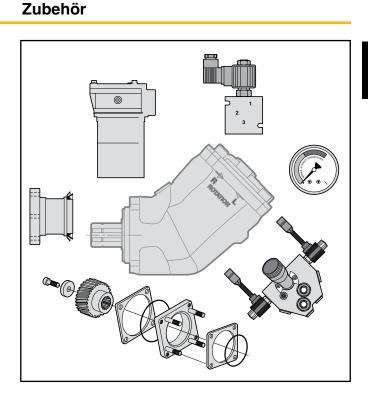
Zubehör

Betätigungssatz und Zubehör für F1, T1, F2, F3 und VP1 Pumpe

Anschlüsse

Sauganschlüsse und und Nippelsätze. Siehe Kapitel 11.

Bypass-Ventile


BPV-F1/-T1, BPV-F1-25 and 81, BPV-F2. Siehe Kapitel 12.

Kurzschlussventil

BPV-L, BPV-VP1. Siehe Kapitel 12.

Zubehör

Betätigungssatz für Nebenabtriebe (PTO), PTO Adaptersats, Kardanwellen, Pumpenkupplung, Montagesätze, Verteilergetriebe (SB 1-1,18, 1-1,54) Siehe Kapitel 13.

Auswahl der Pumpe und Hydraulikleitungen

Einbauanweisung für GPA, GP1, F1, T1, F2, F3 und VP1 Pumpen

Inhalt	Seite
Auswahl der Pumpe	
F1, T1 und F3	13
Auswahl der Hydraulikleitungen	
Für alle Pumpen	14
Nomogram	15

Auswahl der Pumpe und Hydraulikleitungen GPA, GP1, F1, T1, F2, F3 und VP1

Auswahl der Pumpe

F1, T1 und F3

Die Tabelle zeigt den Förderstrom bei versch. Abtrieb-Übersetzungen und Motordrehzahlen.

Über-	Motordrehzahl			Förd	lerstrom [l/	/min]		
setzung	[U/min]	F1-25	F1-41	F1-51	F1-61	T1-81 F1-81 F3-81	F1-101 F3-101	T1 121
1:0.8	800	16	26	33	38	52	66	76
	900	18	29	37	43	59	74	85
	1000	20	33	41	48	65	82	95
	1100	23	36	45	52	72	91	104
	1200	25	39	49	57	78	99	114
1:1.0	800	20	33	41	48	65	82	95
	900	23	37	46	54	73	93	107
	1000	26	41	51	60	82	103	119
	1100	28	45	56	65	90	113	130
	1200	31	49	61	71	98	123	142
1.1.25	800	26	41	51	60	82	103	119
	900	29	46	57	67	92	116	133
	1000	32	51	64	74	102	129	148
	1100	35	56	70	82	111	141	163
	1200	38	61	77	89	122	154	178
1:1.5	800	31	49	61	71	98	123	142
	900	35	55	69	80	110	139	160
	1000	38	61	77	90	122	154	178
	1100	42	67	84	98	135	170	196
	1200	46	74	92	107	147	185	213

NB:

- Die max. Dreh- und Biegemomente des Nebenabtriebs (aufgrund des Pumpengewichts) dürfen nicht überschritten werden. (Der ungefähre Schwerpunkt der verschiedenen Pumpen geht aus den Zeichnungen hervor).
- Beachten Sie, dass das max. zulässige Drehmoment des Nebenabtriebs nicht überschritten wird.
- Fragen Sie die Parker Hannifin wenn der Ansaugdruck unter 1,0 bar liegt; bei unzureichendem Ansaugdruck kann es aufgrund von Kavitation zu einem erhöten Geräuschpegel kommen.

Formeln für Förderstrom/Drehmoment

Förderstrom: $Q = \frac{D \times n}{1000}$ [l/min]

wobei: D = Verdrängungsvolumen [cm³/U]

n = Drehzahl [U/min]

Drehmoment: $M = \frac{\vec{D} \times \vec{p}}{62}$ [Nm]

wobei: D = Verdrängungsvolumen [cm³/U]

p = max. Arbeitsdruck [bar]

Katalog MSG30-8200/DE

LKW-Hydraulik

Auswahl der Pumpe und Hydraulikleitungen GPA, GP1, F1, T1, F2, F3 und VP1

Die geeignete Pumpengröße für die Verwendung im LKW kann wie folgt ausgewählt werden:

Betriebsbedingungen

Als Beispiel für einen Lastkran:

• Förderstrom: 60-80 l/min Druck: 230 bar

Dieselmotordrehzahl ≈ 800 U/min

Bestimmung der Pumpendrehzahl

Als Beispiel: Ein Nebenabtrieb mit ein Übersetzungsverhältnis von 1:1,54. Die Pumpendrehzahl liegt bei:

• 800 x 1,54 ≈ 1200 U/min

Auswahl der geeigneten Pumpe

Diagramm 1 verwenden und eine Pumpe auswählen, die 60 - 80 l/min bei 1200 U/min fördert. Der Linie 'a' (1200 U/min) folgen, bis die Linie 'b' (70 l/min) gekreuzt wird.

• F1-61 ist die geeignete Größe

Erforderliches Antriebsmoment

Vergewissern Sie sich, daß Nebenabtrieb und Getriebe das Pumpendrehmoment tolerieren. Verwenden Sie Diagramm 2 und stellen Sie das erforderliche Pumpendrehmoment fest.

Folgen Sie der Linie 'c' (230 bar) bis Sie die F1-61 Linie (die ausgewählte Pumpe) kreuzt.

Lesen Sie (bei 'd') 220 Nm ab.

NB: Als Daumenregel gilt, daß die höchste Nebenabtriebs-Übersetzung und die kleinste Pumpengröße ausgewählt werden, welche den Grenzspezifikation, ohne Überschreitung von Pumpendrehzahl, Druck und Leistung entspricht.

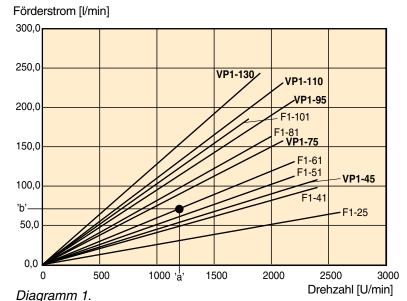
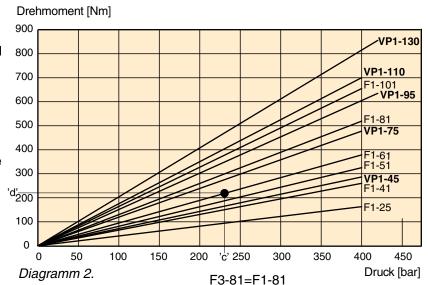



Diagramm 1.

F3-101=F1-101

Auswahl der Hydraulikleitungen

Für alle Pumpen

Ölleitung	Durchflußgeschwindigkeit [m/s]
Saugleitung	max. 1,0
Druckleitung	max. 5,0

Durchfluß	Durchflußgeschw. [m/s] bei gewählten Leitungsdim. [mm/inches]							
[l/min]	19 / ³ / ₄ "	25 / 1"	32 / 1 ¹ / ₄ "	38 / 1 ¹ / ₂ "	51 / 2"	64 / 2 ¹ / ₂ "	75 / 3"	
25	1,5	0,8	0,5	0,4	0,2	0,1	0,1	
50	2,9	1,7	1,0	0,7	0,4	0,3	0,2	
75	4,4	2,5	1,6	1,1	0,6	0,4	0,3	
100	5,9	3,4	2,1	1,5	0,8	0,5	0,4	
150	8,8	5,1	3,1	2,2	1,3	0,8	0,5	
200	-	-	4,1	2,9	1,6	1,1	0,7	
250	-	_	5.3	3.7	2.1	1.3	0.9	

Saugleitung

Tabelle 1.

Druckleitung

Katalog MSG30-8200/DE

Auswahl der Pumpe und Hydraulikleitungen

LKW-Hydraulik GPA, GP1, F1, T1, F2, F3 und VP1

Für ausreichenden Ansaugdruck, niedrigen Geräuschpegel und geringe Ölerwärmung sollte die in Tabelle 1 angegebene Durchflußgeschwindigkeit nicht überschritten werden.

Wählen Sie aus Tabelle 2 (Durchflußgeschwindigkeitsempfehlung) die geringste Leitungsabmessung; Beispiel:

· Bei 100 I/min ist eine 50 mm Saug- und eine 25 mm Druckleitung erforderlich.

NB: Lange Saugleitungen, niedriger Ansaugdruck (wenn z.B. die Pumpe oberhalb des Ölbehälters sitzt) und/oder niedrige Temperaturen können größere Leitungsabmessungen erfordern.

Ansonsten ist die Drehzahl zu senken, um Kavitation (die zu Geräuschentwicklung, herabgesetzter Leistung und Pumpenausfall führt) zu vermeiden.

Ölleitung	Durchflußgeschwindigkeit [m/s]					
Saugleitung	max. 1,0					
Druckleitung	max. 5,0					

Tabelle 2.

Nomogram

Förderstrom - Leitungsabmessung - Durchflußgeschwindigkeit

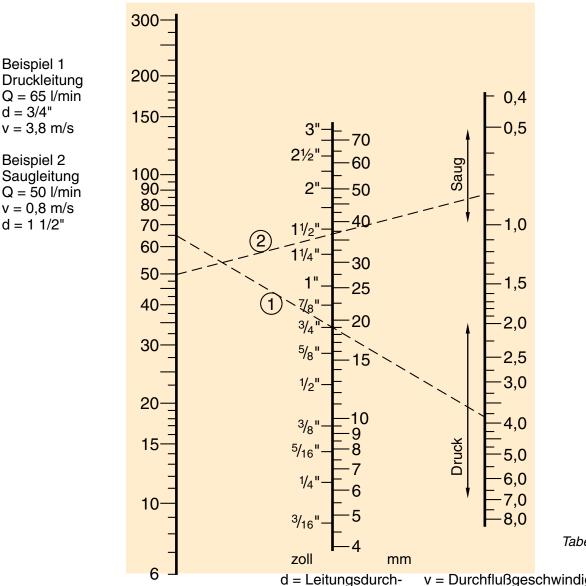


Tabelle 3.

Q = Förderstrom [I/min]

messer [Ø mm]

v = Durchflußgeschwindigkeit [m/s]

GPA und GP1 Pumpen

Inhalt	Seite	Kapite
Auswahl der Pumpe und Hydraulikleitungen	12	2
Technische - Daten	17	
Abmessungen	18-20	
Bestellinformation	21	
Sauganschlüsse	56	11
Einbau und Inbetriebnahme	75	14

GPA und GP1

Serie GPA (Aluminium-Gehäuse; 4-Loch)

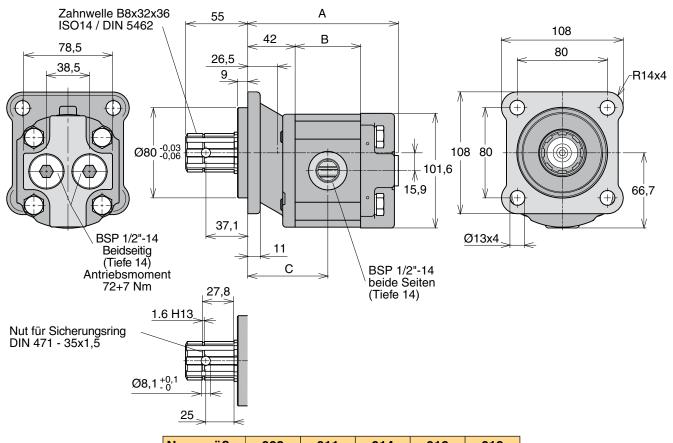
Nenngröße*	800	011	014	016	019
Verdrängungsvol. [cm ³ /U]	8	11	14	16	19
Max Druck [bar]	250				
Betriebsdrehzahl [U/min]					
(Max Druck) min	500	500	500	500	500
max	2000	2000	2000	1750	1500
Gewicht [kg	4,9	5,05	5,2	5,3	5,4

^{*} GPA Mehrfachpumpen auf Anfrage lieferbar.

Serie GP1 (Gusseisen-Gehäuse; 4-Loch)

Nenngröße	023	029	041	046	050	060	080
Verdrängungsvol. [cm ³ /U]	23	29	41	46	50	60	80
Max Druck [bar]	250	250	220	210	260	250	210
Betriebsdrehzahl [U/min] min	500	500	500	500	500	500	500
max	2000	2000	2000	2000	2000	1800	1600
Gewicht [kg	7.3	7.7	8.5	8.8	13.0	13.5	14.0

^{*} Mehrfachpumpen mit GPA Pumpen auf Anfrage lieferbar.



Hydraulikkompetenz.de +49 (0) 451 - 87 97 740

KRAUSE+KÄHLER

GPA-008/-011/-014/-016/-019 4-Loch

Nenngröße	008	011	014	016	019
Маß "А"	128,8	133,5	138,3	141,4	146,1
Маß "В"	53,3	58	62,8	65,9	70,6
Мав "С"	68,7	71	73,4	74,9	77,3

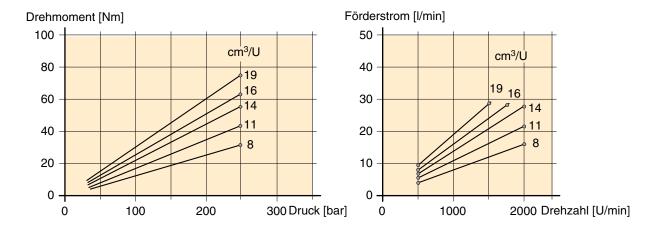
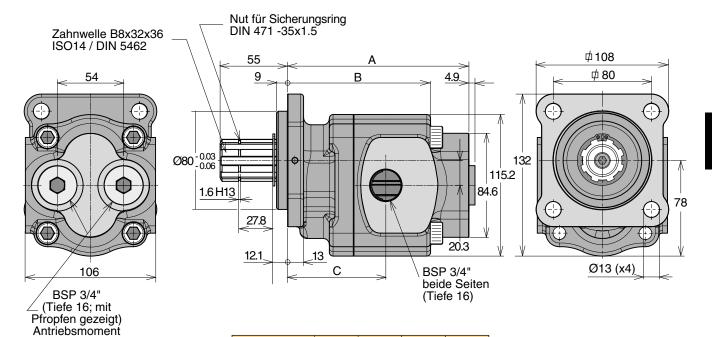


Diagramme zeigen theoretische Werte Drehrichtung: Bi-direktional Eingangsdruck: 0,8 bis 2,0 bar (abs.) Druckflüssigkeitstemperatur: Viskositätsbereich:

-15 °C bis +80 °C 8 bis 1000 mm²/s (cSt)


KRAUSE+KÄHLER

Katalog MSG30-8200/DE **Abmessungen**

115±10 Nm

LKW-Hydraulik GPA und GP1 - konstantes Verdrängungsvolumen

GP1-023/-029/-041/-046 4-Loch

Nenngröße	023	029	041	046
Мав "А"	128.5	134.3	147.7	153.2
Маß "В"	97.3	103.3	116.4	121.9
Маß "С"	77.1	76.0	80.0	84.8

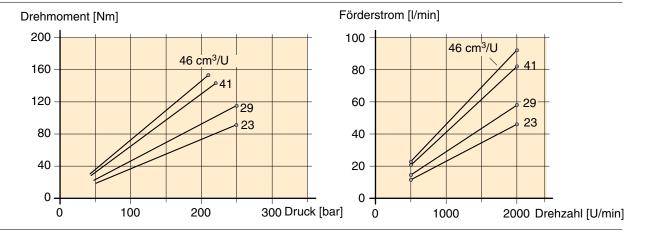


Diagramme zeigen theoretische Werte Drehrichtung: Bi-direktional Eingangsdruck: 0,8 bis 2,0 bar (abs.)

Druckflüssigkeitstemperatur: -15 °C bis +80 °C Viskositätsbereich: 8 bis 1000 mm²/s (cSt)

KRAUSE+KÄHLER Hydraulikkompetenz.de

LKW-Hydraulik **GPA und GP1** - konstantes Verdrängungsvolumen

GP1-050/-060/-080 4-Loch

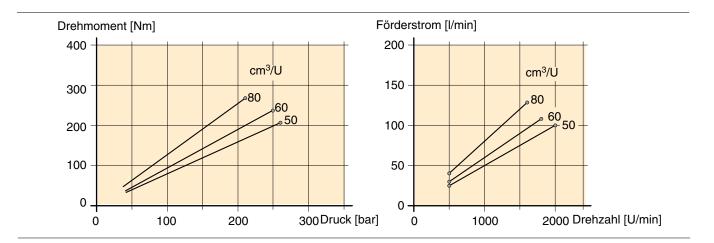


Diagramme zeigen theoretische Werte
Drehrichtung: Bi-direktional
Eingangsdruck: 0,8 bis 2,0 bar (abs.)

Druckflüssigkeitstemperatur: $-15~^{\circ}\text{C}$ bis $+80~^{\circ}\text{C}$ Viskositätsbereich: $8~\text{bis}~1000~\text{mm}^2/\text{s}$ (cSt)

KRAUSE+KÄHLER **Hydraulikkompetenz.de** +49 (0) 451 - 87 97 740

Katalog MSG30-8200/DE **Bestellinformation**

Bestellschlüssel

Beispiel:	GPA- 008 - 4
A Aluminium-Gehäuse 1 Gusseisen-Gehäuse	
Nenngröße ————————————————————————————————————	
4 Befestigungsflansch mit 4 L	öcher

NB: Der Sauganschluss muß separat bestellt werden. Siehe Kapitel 11.

Standardausführungen

GPA und GP1 - konstantes Verdrängungsvolumen

LKW-Hydraulik

Aluminium-Gehäuse 4-Loch

Bezeichnung	Bestellnr.
GPA-008-4	334 9113 940
GPA-011-4	334 9113 941
GPA-014-4	334 9113 942
GPA-016-4	334 9113 943
GPA-019-4	334 9113 944

Gusseisen-Gehäuse 4-Loch

Bezeichnung	Bestellnr.
GP1-023-4	722 9113 005
GP1-029-4	722 9113 006
GP1-041-4	722 9113 007
GP1-046-4	722 9113 008
GP1-050-4	704 9113 941
GP1-060-4	704 9113 942
GP1-080-4	704 9113 944

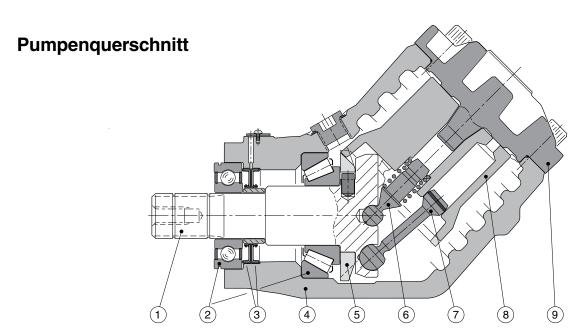
Dichtsätze für GPA und GP1

Bezeichnung	Bestellnr.	
Dichtsatz GPA 8-19CC	391 1842 645	
Dichtsatz GP1 23-46 CC	391 1842 636	
Dichtsatz GP1 50-80 CC	391 1832 690	

F1 Pumpe F1-ISO

Inhalt	Seite	Kapite
Auswahl der Pumpe und Hydraulikleitungen	12	2
F1-25 bis -101, ISO	23	
Technische Daten und Pumpenquerschnitt	23	
Abmessungen, F1-25, -41, -51 und -61	24	
Bestellschlüssel und Standardausführungen	24	
Abmessungen, F1-81 und -101	25	
Anschlüsse und Standardausführunge	25	
F1-12 ISO mit BSP Anschlüsse	26	
Technische Daten und Pumpenquerschnitt	26	
Abmessungen, F1-12 mit BSP-Anschlüsse	27	
Bestellschlüssel und Standardausführungen	27	
Abmessungen, F1-25, bis -101 mit BSP-Anschlüsse	.28-29	
Bestellschlüssel und Standardausführungen	.28-29	
Sauganschlüsse	56	11
Einbau und Inbetriebnahme	75	14

F1 Pumpe - konstantes Verdrängungsvolumen


F1-25 bis -101, ISO

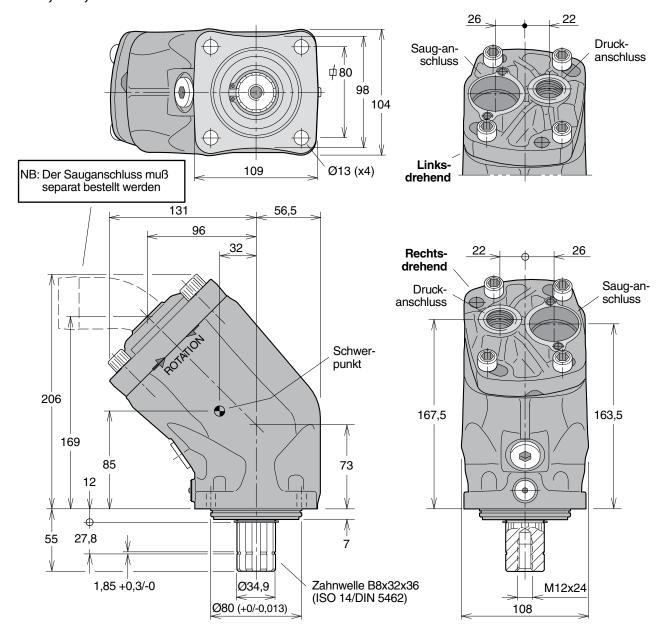
Technische Daten

F1 Nenngröße-	25	41	51	61	81	101
Verdrängungsvolumen [cm ³ /U]	25,6	40,9	51,1	59,5	81,6	102,9
Max. Förderstrom ¹⁾ [l/min]	67	98	112	131	163 ³⁾	185 ³⁾
Max. Betriebsdruck [bar]	400	400	400	400	400	400
Massenträgheitsmoment J [kgm²]	0,00274	0,00266	0,00261	0,00257	0,00532	0,00524
Drehzahl [U/min]						
- im Kurzschluß (niedr. Druck)	2700	2700	2700	2700	2300	2300
- Max. Drehzahl bei 350 bar ²⁾	2600	2400	2200	2200	2000 ³⁾	1800 ³⁾
Antriebsmoment 1) [Nm]	163	260	324	378	518	653
Leistung [kW]	39	57	66	76	95	108
Gewicht [kg]	8,5	8,5	8,5	8,5	12,5	12,5

- 1) Theoretische Werte
- 2) Bei einem Ansaugdruck von 1,0 bar (absolut) bei Verwendung von Mineralöl mit einer Betriebsviskosität von 30 mm ²/s (cSt).
- 3) Bei $2^{1}/_{2}$ " Sauganschluss. Mit 2" Sauganschluss: F1-81 max. 1400 U/min (Q \approx 120 I/min); F1-101 max. 1000 U/min (Q \approx 120 I/min).

NB: Geräuschpegelinformationen erteilt die Parker Hannifin.

- 1. Welle
- 2. Lagerungen
- 3. Wellendichtung
- 4. Gehäuse
- 5. Zahnkranz
- 6. Andrückzapfen
- 7. Kolben mit Kolbenring
- 8. Kolbentrommel
- 9. Enddeckel



F1 Pumpe - konstantes Verdrängungsvolumen

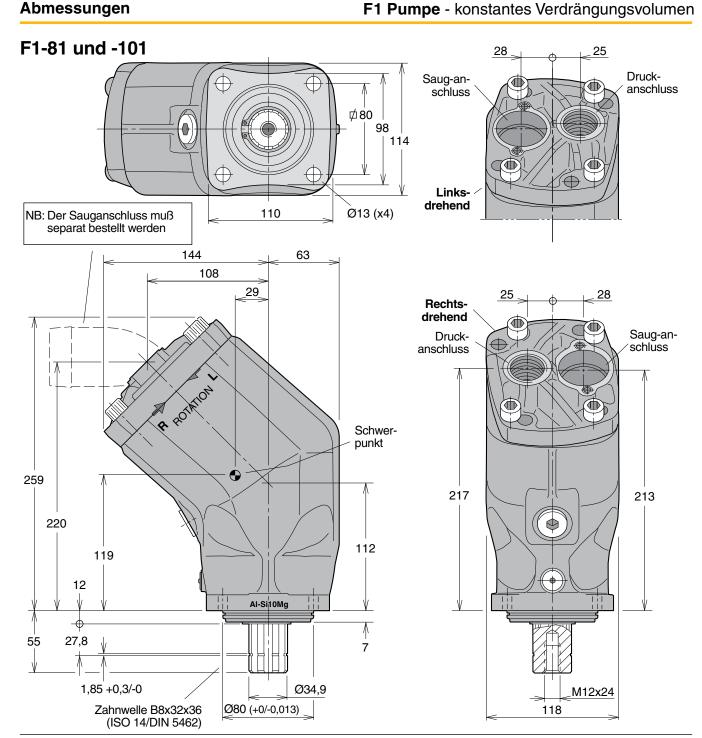
KRAUSE+KÄHLER

Hydraulikkompetenz.de

F1-25, -41, -51 und -61

Bestellschlüssel

NB: Der Sauganschluss muß separat bestellt werden. Siehe Kapitel 11.


Standardausführungen

Bezeichnung	Bestellnr.
F1-25-R	378 1024
F1-25-L	378 1025
F1-41-R	378 1040
F1-41-L	378 1041
F1-51-R	378 1050
F1-51-L	378 1051
F1-61-R	378 1060
F1-61-L	378 1061

KRAUSE+KÄHLER Hydraulikkompetenz.de +49 (0) 451 - 87 97 740

LKW-Hydraulik

Anschlüsse

Nenngröße	Druck- anschluss ¹⁾
-25	3/4"
-41	3/4"
-51	3/4"
-61	3/4"
-81	1"
-101	1"

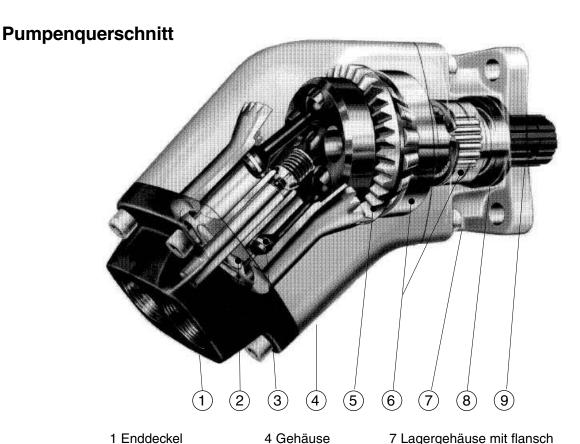
¹⁾R-Gewinde (Druckanschluss nicht inkludiert)

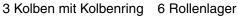
Standardausführungen

Bezeichnung	Bestellnr.
F1-81-R	378 1080
F1-81-L	378 1081
F1-101-R	378 1100
F1-101-L	378 1101

NB: Der Sauganschluss muß separat bestellt werden. Siehe Kapitel 11.

F1 Pumpe - konstantes Verdrängungsvolumen


F1-12 ISO mit BSP Anschlüsse


Technische Daten

F1 Nenngröße	12
Verdrängungsvolumen [cm ³ /U]	12
Max. Förderstrom ¹⁾ [I/min]	28
Max. Betriebsdruck [bar]	350
Drehzahl [U/min]	
- im Kurzschluß (niedr. Druck)	3100
- max Selbstsaugdrehzahl	2300
Antriebsmoment 1) [Nm]	67
Leistung [kW]	16
Gewicht [kg]	6,7

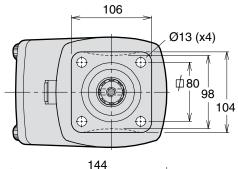
1) Theoretische Werte

NB: Geräuschpegelinformationen erteilt die Parker Hannifin.

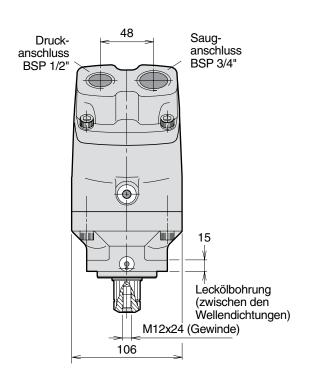
2 Kolbentrommel

5 Zahnkranz

7 Lagergehäuse mit flansch


8 Wellendichtung

9 Welle



KRAUSE+KÄHLER Hydraulikkompetenz.de +49 (0) 451 - 87 97 740

F1-12 mit BSP-Anschlüsse

F1 Pumpe - konstantes Verdrängungsvolumen

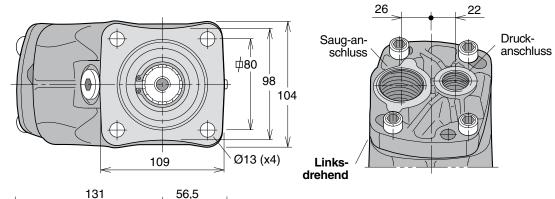
Bestellschlüssel

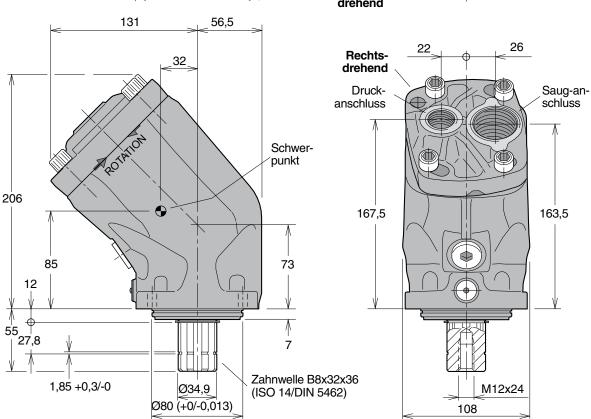
Beispiel: F1- 12 - R
F1-Nenngröße 12

Drehrichtung
R Rechtsdrehend
L Linksdrehend

NB: Der Sauganschluss muß separat bestellt werden. Siehe Kapitel 11.

Standardausführungen


Bezeichnung	Bestellnr.
F1-12-R	378 2212
F1-12-L	378 2211



F1 Pumpe - konstantes Verdrängungsvolumen

Hydraulikkompetenz.de

F1-25, -41, -51 und -61 mit BSP-Anschlüsse

Anschlüsse (Anschlüssemit BSP-Gewinde)

F1-Nenngröße	Druckanschluss	Sauganschluss
-25	3/4"	1"
-41	3/4"	1"
-51	3/4"	1"
-61	3/4"	1"

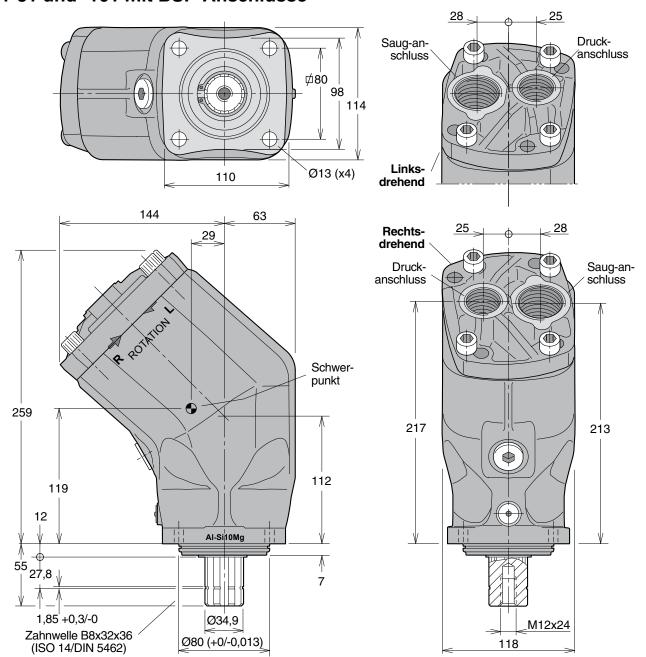
Bestellschlüssel

Beispiel: F1- 61 - RB
F1-Nenngröße ______

25, 41, 51, 61, 81 oder 101
Drehrichtung _____

RB Rechtsdrehend/BSP LB Linksdrehend/BSP

Standardausführungen


Bezeichnung	Bestellnr.
F1-25-RB	378 4024
F1-25-LB	378 4025
F1-41-RB	378 4040
F1-41-LB	378 4041
F1-51-RB	378 4050
F1-51-LB	378 4051
F1-61-RB	378 4060
F1-61-LB	378 4061

NB: Der Sauganschluss muß separat bestellt werden. Siehe Kapitel 11.

KRAUSE+KÄHLER Hydraulikkompetenz.de+49 (0) 451 - 87 97 740

F1-81 und -101 mit BSP-Anschlüsse

Anschlüsse (Anschlüsse mit BSP-Gewinde)

F1-Nenngröße	Druckanschluss	Sauganschluss
-81	1"	1 ¹ / ₄ "
-101	1"	11/4"

Bestellschlüssel

LB Linksdrehend/BSP

Beispiel:	F1-81 - RB
F1-Nenngröße	
25, 41, 51, 61, 81	or 101
Drehrichtung	
RB Rechtsdrehen	d/BSP

Standardausführungen

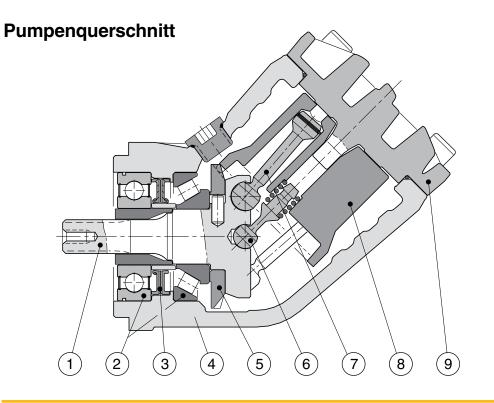
Bezeichnung	Bestellnr.
F1-81-RB	378 4080
F1-81-LB	378 4081
F1-101-RB	378 4100
F1-101-LB	378 4101

NB: Der Sauganschluss muß separat bestellt werden. Siehe Kapitel 11.

F1 Pumpe F1-SAE

Inhalt	Seite	Kapitel
Auswahl der Pumpe und Hydraulikleitungen	12	2
Technische Daten	31	
Pumpenquerschnitt	31	
Abmessungen	32	
Bestellschlüssel (SAE)	32	
Anschlüsse	32	
Standardausfürungen (SAE)	32	
Sauganschlüsse	56	11
Einbau und Inbetriebnahme	75	14

F1 Pumpe - konstantes Verdrängungsvolumen

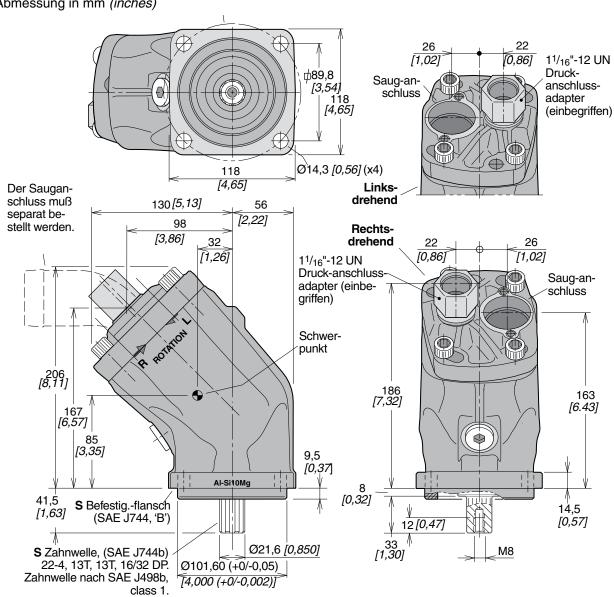


Technische Daten

F1 Nenngröße	25	41	51	61
Verdrängungsvolumen [cm ³ /U]	25,6	40,9	51,1	59,5
Max. Förderstrom ¹⁾ [I/min]	67	98	112	131
Max. Betriebsdruck [bar]	350	350	350	350
Drehzahl [U/min]				
- im Kurzschluß (niedr. Druck)	2700	2700	2700	2700
- Max. Drehzahl bei 350 bar ²⁾	2600	2400	2200	2200
Antriebsmoment bei 350 bar ¹⁾ [Nm]	142	227	284	331
Max. Leistung [kW]	39	57	66	76
Gewicht [kg]	8,5	8,5	8,5	8,5

- 1) Theoretische Werte
- 2) Bei einem Ansaugdruck von 1,0 bar (absolut) bei Verwendung von Mineralöl mit einer Betriebsviskosität von 30 mm²/s (cSt).

NB: Geräuschpegelinformationen erteilt die Parker Hannifin.


- 1. Welle
- 2. Lagerungen
- 3. Wellendichtung
- 4. Gehäuse
- 5. Zahnkranz
- 6. Andrückzapfen
- 7. Kolben mit Kolbenring
- 8. Kolbentrommel
- 9. Enddeckel

KRAUSE+KÄHLER ydraulikkompetenz.de +49 (0) 451 - 87 97 740

F1-25, -41, -51 und -61 (SAE)

Abmessung in mm (inches)

Bestellschlüssel (SAE)

F1-61-RU-SV-S Beispiel:

F1-Nenngröße 25, 41, 51 oder 61 Drehrichtung R Rechtsdrehend Linksdrehend

Anschlüsse

Nenngröße	Druckanschluss ¹⁾
-25	1 ¹ / ₁₆ "-12 UN
-41	1 ¹ / ₁₆ "-12 UN
-51	1 ¹ / ₁₆ "-12 UN
-61	1 ¹ / ₁₆ "-12 UN

1) R-bis-SAE adapter (einschließlich).

Druckanschluss U SAE O-ring, UN-Gewinde

Standardausfürungen (SAE)

Bezeichnung	Bestellnr.
F1-25-RU	378 1424
F1-25-LU	378 1425
F1-41-RU	378 1440
F1-41-LU	378 1441
F1-51-RU	378 1450
F1-51-LU	378 1451
F1-61-RU	378 1460
F1-61-LU	378 1461

NB: Der Sauganschluss muß separat bestellt werden. Siehe Kapitel 11.

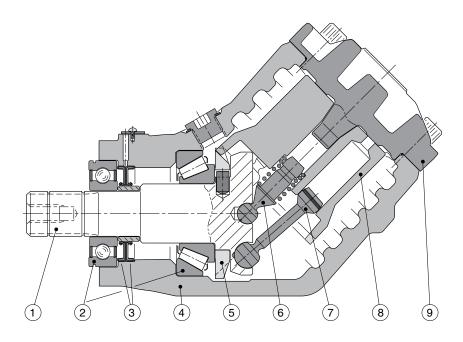
Hydraulikkompetenz.de +49 (0) 451 - 87 97 740

T1 Pumpe

Inhalt	Seite	Kapitel
Auswahl der Pumpe und Hydraulikleitungen	12	2
Technische Daten	34	
Pumpenquerschnitt	34	
Abmessungen	35-36	
Bestellschlüssel	35	
Standardausführungen	35	
Anschlussgröße	35	
Sauganschlüsse	56	11
Einbau und Inbetriebnahme	75	14

KRAUSE+KÄHLER Hydraulikkompetenz.de +49 (0) 451 - 87 97 740

T1 Nenngröße	81	121
Verdrängungsvolumen [cm ³ /U]	81,5	118,5
Max. Förderstrom ¹⁾ [I/min]	163 ³⁾	190 ³
Max. Betriebsdruck [bar]		
- Dauerbetrieb	250	250
- Höchstdruck ⁴)	350 350	
Drehzahl [U/min]		
- im Kurzschluß (niedr. Druck)	2300	2300
- Max. Drehzahl ²⁾	²⁾ 2000 ³⁾ 1600 ³	
Antriebsmoment 1) [Nm]		
- bei 200 bar	258	376
- bei 350 bar	453	658
Max. Leistung [kW]	95	111
Gewicht [kg]	8,5	12,5

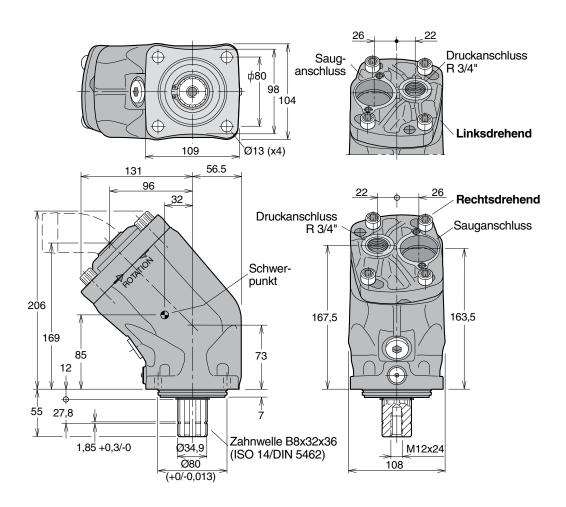

- 1) Theoretische Werte
- Bei einem Ansaugdruck von 1,0 bar (absolut) bei Verwendung von Mineralöl mit einer Betriebsviskosität von 30 mm²/s (cSt)
- 3) Bei 2¹/₂" Sauganschluss.
 Mit 2" Sauganschluss:
 T1-81 max 1400 U/min (Q≈120 l/min);
 T1-121 max 950 U/min (Q≈120 l/min)

T1 Pumpe - konstantes Verdrängungsvolumen

4) Max 6 Sekunden während einer Minute.

NB: Geräuschpegelinformationen erteilt die Parker Hannifin.

Pumpenquerschnitt


- 1. Welle
- 2. Lagerungen
- 3. Wellendichtung
- 4. Gehäuse
- 5. Zahnkranz
- 6. Andrückzapfen
- 7. Kolben mit Kolbenring
- 8. Kolbentrommel
- 9. Enddeckel

T1 Pumpe - konstantes Verdrängungsvolumen

KRAUSE+KÄHLER Hydraulikkompetenz.de +49 (0) 451 - 87 97 740

T1-81

Bestellschlüssel

Beispiel: T1 - 81 - R

Nenngröße
81 oder 121

Drehrichtung
R Rechtsdrehend
L Linksdrehend

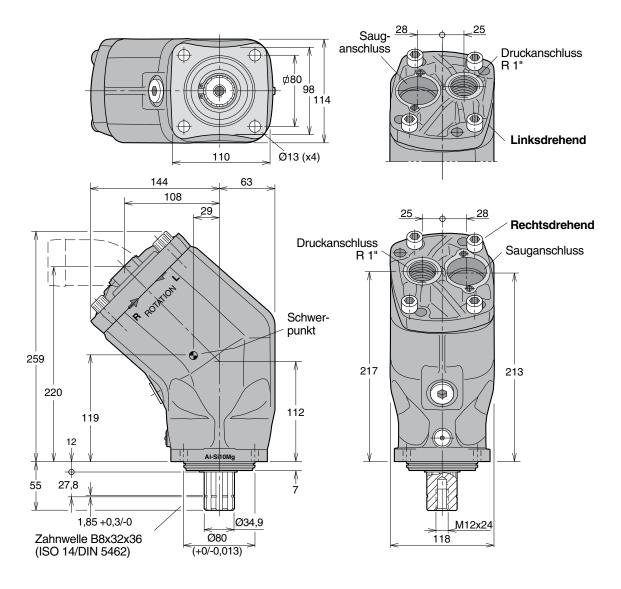
Standardausführungen

Bezeichnung	Bestellnr.
T1-81-R	378 2180
T1-81-L	378 2181
T1-121-R	378 2120
T1-121-L	378 2121

Anschlussgröße

Nenngröße	Druckanschluss ¹⁾
-81	3/4"
-121	1"

1) R-Gewinde (Anschluss nicht inbegriffen).


NB: Der Sauganschluss muß separat bestellt werden. Siehe Kapitel 11.

KRAUSE+KÄHLER

T1 Pumpe - konstantes Verdrängungsvolumen

T1-121

F1 Motor

Inhalt	Seite	Kapite
Auswahl der Pumpe und Hydraulikleitungen	12	2
Technische Daten	38	
Bestellschlüssel	38	
Abmessungen	38	
Anschlüsse	38	
Standardausfürungen	38	
Sauganschlüsse	56	11
Einbau und Inbetriebnahme	75	14

LKW-Hydraulik

F1 Motor - konstantes Verdrängungsvolumen

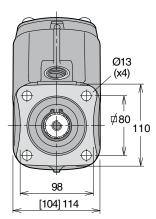
Nenngröße F1-	25-M	41-M	51-M	61-M	81-M	101-M	121-M
Verdrängungsvolumen [cm ³ /U]	25,6	40,9	51,1	59,5	81,6	102,9	118,5
Max. Betriebsdruck [bar]							
- Dauerbetrieb	250	250	250	250	250	250	250
- Höchstdruck 1)	350	350	350	350	350	350	350
Drehzahl [U/min]							
- Dauerbetrieb	2 300	2 000	1 800	1 700	1 500	1 400	1300
- Höchstdruck	3 000	2 700	2 400	2 200	2 000	1 800	1700
Antriebsmoment (Theoretisch) [Nm							
- bei 250 bar	101	162	203	236	324	408	470
- bei 350 bar	142	227	284	331	453	572	658
Max. Leistung [kW]	45	64	72	76	95	108	117
Gewicht [kg]	8,5	8,5	8,5	8,5	12,5	12,5	12,5

¹⁾ Max 6 Sekunden während einer Minute.

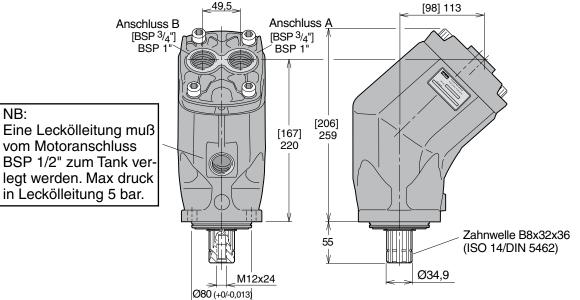
Bestellschlüssel

Beispiel: **F1 - 81 - M**

F1 Motor Nenngröße 25, 41, 51, 61, 81, 101 oder 121


Anschlüsse

Nenngröße	Anschluss
F1-25/41/51/61	3/4"
-81/101/121	1"


Standardausfürungen

Bezeichnung	Bestellnr.
F1-25-M	378 1724
F1-41-M	378 1740
F1-51-M	378 1750
F1-61-M	378 1760
F1-81-M	378 1780
F1-101-M	378 1800
F1-121-M	378 4120

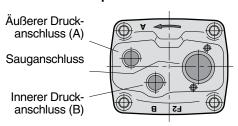
Abmessungen

- **NB:** Abmessungen ohne Klammer gültig für F1-81/-101-M/-121-M.
 - Abmessungen in Klammer [] gültig für F1-25/-41/-51/-61-M.
 Alle Maßangaben in mm.

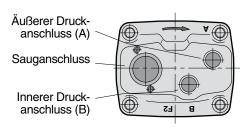
Zweikreispumpe Serie F2

Inhalt	Seite	Kapitel
Auswahl der Pumpe und Hydraulikleitungen	12	2
Technische Daten	40	
Förderstrom/Drehzahlen	40	
Drehmoment/Arbeitsdruck	40	
Abmessungen	41	
Bestellschlüssel	41	
Standardausführungen	41	
Sauganschlüsse	56	11
Einbau und Inbetriebnahme	75	

KRAUSE+KÄHLER


LKW-Hydraulik

Zweikreispumpe F2 - konst. Verdrängungsvol.


Nenngröße F2-	42/42	53/53	55/28	70/35	70/70
Verdrängungsvolumen [cm ³ /U]					
Anschluss A	43	54	55	69	68
Anschluss B	41	52	28	36	68
Max. Arbeitsdruck [bar]					
Dauerbetrieb	350	350	350	350	300
Höchstleistung ³⁾	400	400	400	400	350
Massenträgheitsmoment J [kgm²]	0,0092	0,0091	0,0091	0,0090	0,0104
Max Antriebsdrehzahl [U/min]					
(im Kurzschluß; niedr. Druck)	2550	2550	2550	2550	2550
Max Selbstsaugdrehzahl [U/min]					
Anschl. A ¹⁾²⁾ und B ¹⁾²⁾ druck-	1800	1800	1800	1800	1650
beaufschlagt					
Anschl. A ²⁾ drucklos, Anschluss B druck-	2100	2100	2100	2100	2100
beaufschlagt					
Max. Leistung [kW]	100	127	100	110	131
Gewicht [kg]	19	19	19	19	19

- 1) Bei 2¹/₂" Sauganschluss. Mit 2" Sauganschluss: 53/53 und 70/35 max. 1100 U/min, 42/42 und 55/28 max. 1 400 U/min. (q≈120 l/min)
- Bei einem Ansaugdruck von 1,0 bar (absolut).
 Anmerkung: geringerer Einlaßdruck verringert die Selbstsaugdrehzahl.
- 3) Max. 6 Sekunden während einer Minute.

Enddeckel für links- bzw. rechtsdrehende Pumpe

Enddeckel für rechtsdrehende Pumpe

Enddeckel für linksdrehende Pumpe

Förderstrom/Drehzahlen (theoretisch)

Drehzahl [U/min]	800	1000	1200	1400	1600	1800	1900	2000	2100
F2-53/53 Förderstrom [I/min									
Anschluss A	43	54	65	76	86	97	-	-	-
Anschluss B	42	52	62	73	83	94	99	104	109
Gesamt (Anschl. A + B)	85	106	127	149	169	191	-	-	-
N.B. Förderstrom für 42/42 ist 80% von Förderstrom für 53/53						}			
		Förders	strom für	70/70 ist	t 130% vo	on Förde	rstrom fü	ir 53/53	
F2-70/35 Förderstrom [I/min]									
AnschlussA	55	69	83	97	110	124	-	-	-
Anschluss A Anschluss B	55 29	69 36	83 43	97 50	110 58	124 65	- 68	72	- 76
				· ·			- 68 -	- 72 -	- 76 -


Drehmoment/Arbeitsdruck (theoretisch)

Anschluss B Gesamt (Anschl. A and B)	86 250	114 333	143 417	171 500	200 583
Anschluss A	164	219	274	329	383
F2-70/35 Drehmoment [Nm]					
	N.B. Förderstrom für 42/42 ist 80% von Förderstrom für 53/53 Förderstrom für 70/70 ist 130% von Förderstrom für 53/53				
Gesamt (Anschl. A and B)	253	336	420	505	589
Anschluss B	124	165	206	248	289
Anschluss A	129	171	214	257	300
F2-53/53 Drehmoment [Nm]					
Arbeitsdruck [bar]	150	200	250	300	350

KRAUSE+KÄHLER

LKW-Hydraulik Zweikreispumpe F2 - konst. Verdrängungsvol.

Bestellschlüssel

F2 - 53/53 - L Beispiel: Nenngröße [cm³/U] 42/42 53/53 55/28 70/35 70/70

Drehrichtung Linksdrehend Rechtsdrehend

Standardausführungen

Bezeichnung	Bestellnr
F2-42/42-R	378 4042
F2-42/42-L	378 4043
F2-53/53-R	378 1453
F2-53/53-L	378 1454
F2-55/28-R	378 4128
F2-55/28-L	378 4129
F2-70/35-R	378 1470
F2-70/35-L	378 1471
F2-70/70-R	378 4070
F2-70/70-L	378 4071

- Vor Inbetriebnahme stets den Inspektionsstopfen mit 70-100 Nm anziehen.
- Zur Änderung der Drehrichtung ist der Enddeckel auszuwechseln.

NB: Der Sauganschluss muß separat bestellt werden. Siehe Kapitel 11.

KRAUSE+KÄHLER **Hydraulikkompetenz.de** +49 (0) 451 - 87 97 740

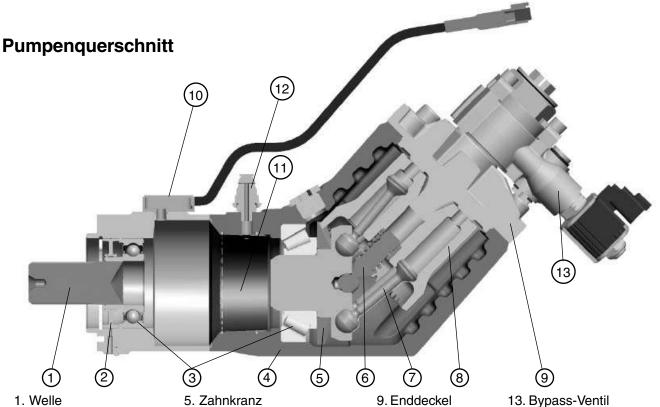
F3 Pumpe

Seite	Kapite
12	2
43	
43	
43	
44-45	
44-45	
44-45	
g46	
46	
56	11
75	14

F3-81 und -101, ISO Technische Daten

F3 Nenngröße-	81	101
Verdrängungsvolumen [cm ³ /U]	81.6	102.9
Max. Förderstrom ¹⁾ [I/min]		
bei 350 bar	163 ³⁾	185 ³⁾
bei 400 bar	143	160
Max. Betriebsdruck [bar]		
- Dauerbetrieb	350	350
- Höchstdruck	400	400
Drehzahl [U/min]		
- im Kurzschluß (niedr. Druck)	2300	2300
- Max. Drehzahl bei 350 bar ²⁾	2000 ³⁾	1800 ³⁾
-Max. Drehzahl bei 400 bar ²⁾	1750	1550 ³⁾
Antriebsmoment 1) [Nm]		
bei 350 bar	453	572
bei 400 bar	518	653
Leistung [kW]		
- Dauerbetrieb	76	85
- Höchstleistung 4)	95	123
Gewicht [kg]	16.7	16.7

BPV-F3 Bypass-Ventil 12 oder 24 VDC Ohne Nothandbetätigung

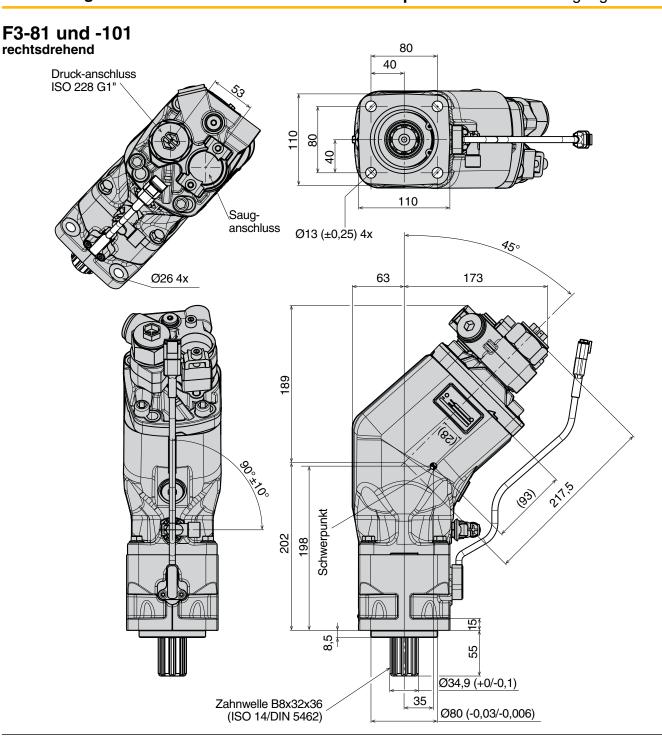

F3 Pumpe - konstantes Verdrängungsvolumen

	
Bypass-Ventil, Typ	BPV-F3
Max. Arbeitsdruck	350 bar
Höchstdruck	400 bar
Magnetventil-Spannung (Option)	12 oder 24 VDC
Erforderliche Leistung	14 W
Betriebsart	Magnetventil aktiv: Bypass-Ventil geschlossen

Zubehör / Ersatzteile siehe Seite 64

- Das symmetrische Bypass-Ventil läßt sich um 180° drehen, so daß Kolissionen mit Fahrgestellteilen verhindert werden
- Das Ventil läßt sich nur bei unbelastetem System aktivieren bzw. deaktivieren (über das Magnetventil). És funktioniert bei offener Mittelstellung und bewirkt geringen Druckabfall bei niedrigem Durchfluß.
- 1) Theoretische Werte
- 2) Bei einem Ansaugdruck von 1,0 bar (absolut) bei Verwendung von Mineralöl mit einer Betriebsviskosität von 30 mm²/s (cSt).
- 3) Bei $2^1/_2$ " (63 mm)Sauganschluss. Mit 2" Sauganschluss: F3-81 max. 1400 U/min (Q \approx 120 I/min); F3-101 max. 1000 U/min (Q \approx 120 I/min).
- 4) Max 6 Sekunden während einer Minute.

NB: Geräuschpegelinformationen erteilt die Parker Hannifin.


- 1. Welle
- 2. Wellendichtung
- 3. Lagerungen
- 4. Gehäuse
- 5. Zahnkranz
- 6. Andrückzapfen
- 7. Kolben mit Kolbenring
- 8. Kolbentrommel
- 9. Enddeckel
- 10. Lagesensor
- 11. Luftzylinder
- 12. Luftanschluss

LKW-Hydraulik

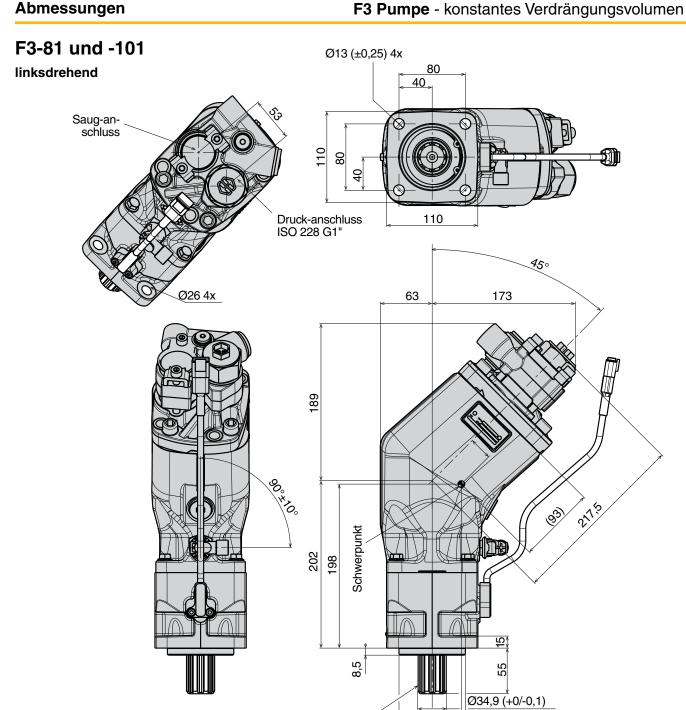
F3 Pumpe - konstantes Verdrängungsvolumen

Anschlüsse

Nenngröße	Druckanschluss ¹⁾
-81	1"
-101	1"

¹⁾ R-Gewinde (Druckanschluss nicht inkludiert)

NB: Der Sauganschluss muß separat bestellt werden. Siehe Kapitel 11.


Standardausführungen

Bezeichnung	Bestellnr. 24 VDC	Bestellnr. 12 VDC
F3-81-R-	372 0091	3720382
F3-101-R-	372 0093	3720384

KRAUSE+KÄHLER

LKW-Hydraulik

Anschlüsse

Nenngröße	Druckanschluss ¹⁾
-81	1"
-101	1"

¹⁾ R-Gewinde (Druckanschluss nicht inkludiert)

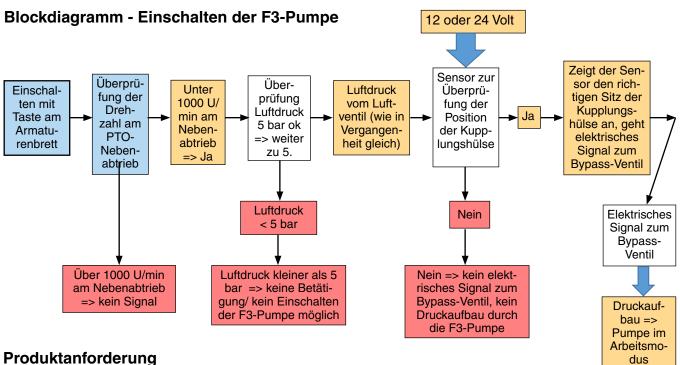
NB: Der Sauganschluss muß separat bestellt werden. Siehe Kapitel 11.

Standardausführungen

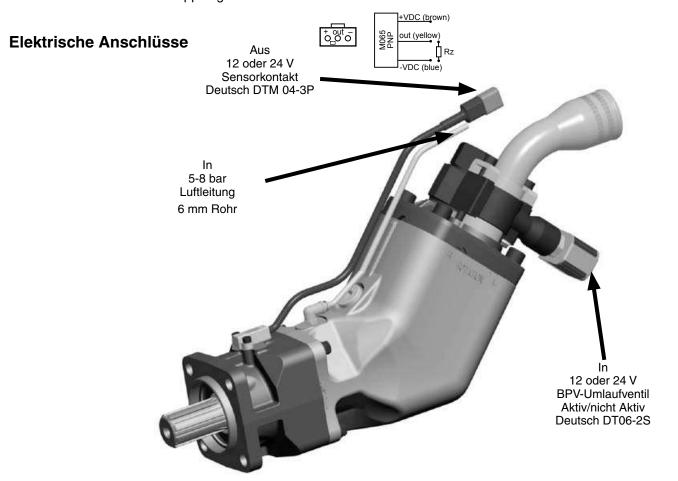
Bezeichnung	Bestellnr. 24 VDC	Bestellnr. 12 VDC
F3-81-L-	372 0092	3720383
F3-101-L-	372 0094	3720385

Ø80 (-0,03/-0,006)

Zahnwelle B8x32x36


(ISO 14/DIN 5462)

KRAUSE+KÄHLER


LKW-Hydraulik

Blockdiagramm und Produktanforderung

F3 Pumpe - konstantes Verdrängungsvolumen

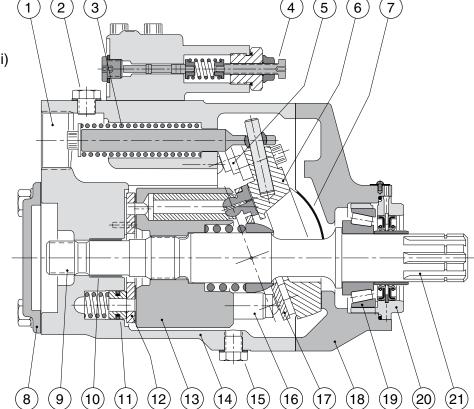
- Überprüfung der Drehzahl (1000 U/min nicht überschreiten), bevor die F3-Pumpe in das System eingebunden werden darf!
- Luftdruck > 5 bar f
 ür die Kopplung

Hydraulikkompetenz.de +49 (0) 451 - 87 97 740

Inhalt	Seite	Kapitel
Auswahl der Pumpe und Hydraulikleitungen	12	2
Technische Daten	48	
VP1-045/-075 Querschnittszeichnung	48	
Abmessungen, VP1-045 und -075	49	
LS-Ventilblock VP1-045/075	50	
VP1-095/-110/-130 im Querschnittszeichnung	51	
LS-Regler (für VP1-095/-110/-130)	51	
Abmessungen, VP1-095/-110/-130	52	
Systeminformation	53	
Bestellschlüssel und Standardausführungen	53	
VP1 in Load-Sensing-Systemen und Systemvergleich	53	
Systeminformation	54	
LS-Funktion und Einstellung der LS-Einheit	54	
Hydraulik-Schaltplan für VP1-095/-110/-130	54	
Sauganschlüsse	56	11
Installation und Inbetriebnahme für VP1	79	14

Katalog MSG30-8200/DE **Technische Daten**

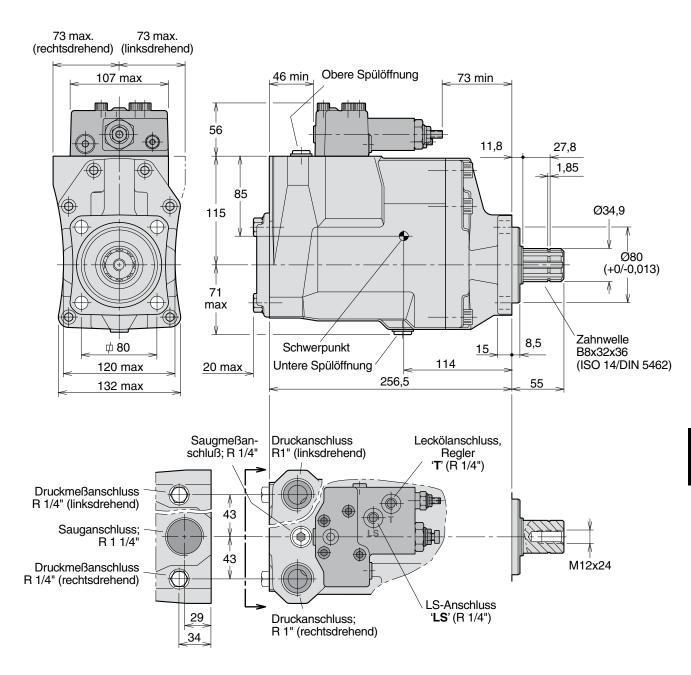
LKW-Hydraulik


VP1 Pumpe - variables Verdrängungsvolumen

Nenngröße VP1-	045	075	095	110	130
Max. Verdrängung [cm ³ /U]	45	75	95	110	128
Max. Druck [bar]					
Dauerbetrieb	350	350	400	400	400
Spitze ¹⁾	400	400	420	420	420
Massenträgheitsmoment J [kgm²]	0,00606	0,00606	0,00681	0,00690	0,00690
Selbstsaugdrehzahl 2) [U/min]					
- 2" Saugleitung, max.	2200	1700	1250	1100	900
- 2 ¹ / ₂ " Saugleitung, max.	2400	2100	1750	1500	1300
- 3" Saugleitung, max.	-	-	2200	2100	1900
Max. Drehzahl bei drucklosen Umlauf, [U/min]					
(in Bypass-Modus - keine Durchfluß)	3000	3000	3000	3000	3000
Steuereinheit	t LS				
Zahnwellenende	DIN 5462				
Anbauflansch	ISO 7653-1985				
Gewicht (m. Regler) [kg]	27				

- 1) Max 6 Sekunden während einer Minute.
- Bei einem Ansaugdruck von 1,0 bar (absolut) bei Verwendung von Mineralöl mit einer Betriebs- viskosität von 30 mm²/s (cSt)

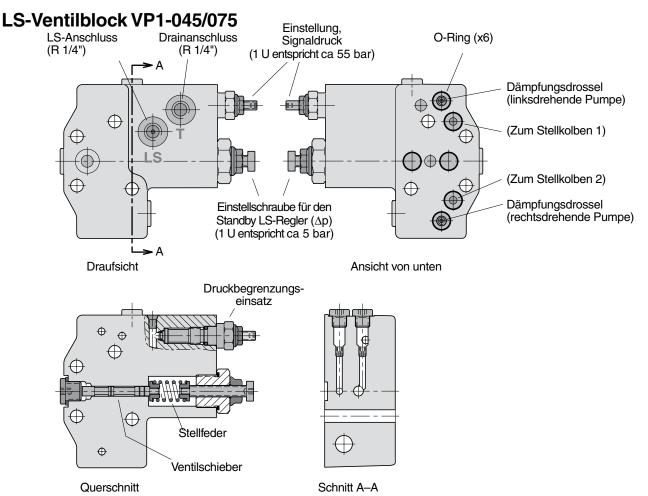
VP1-045/-075 Querschnittszeichnung


- 1. Sauganschluss
- 2. Obere Spülöffnung
- 3. Rückholfeder
- 4. Steuereinheit
- 5. Stellkolben (einer von zwei)
- 6. Schrägscheibe
- 7. Lagerschale
- 8. Enddeckel
- 9. Zahnwelle (für Anbau einer weiteren Pumpe)
- 10. Gleitlager
- 11. Anpreßkolben für Steuerscheibe
- 12. Ventilscheibe aus Bimetal
- 13. Kolbentrommel
- 14. Trommelgehäuse
- 15. Untere Spülöffnung
- 16. Kolben mit Kolbenschuh
- 17. Rückholplatte
- 18. Lagergehäuse
- 19. Rollenlager
- 20. Wellendichtung
- 21. Antriebswelle

KRAUSE+KÄHLER Hydraulikkompetenz.de+49 (0) 451 - 87 97 740

VP1-045 und -075

WICHTIG!


Die Steuereinheit wird *nicht* über das Pumpengehäuse drainiert. Eine externe Leckölleitung *muß* vom Leckölanschluss 'T' zum Tank installiert werden.

NB: Der Sauganschluss muß separat bestellt werden. Siehe Kapitel 11.

Katalog MSG30-8200/DE **Technische Daten**

LKW-Hydraulik VP1 Pumpe - variables Verdrängungsvolumen

Abb. 2. LS-Ventilblock.

Tandemmontage VP1-045/075

Die VP1 hat eine durchgehende Welle, an die mittels eines Adaptersatzes eine zusätzliche Pumpe, wie z.B. eine F1 mit konstantem Verdrängungsvolumen, angeschlossen werden kann (Abb. 3).

N.B.: Das durch das Gewicht der beiden Pumpen verursachte Biegemoment übersteigt normalerweise das zulässige Biegemoment des Nebenabtriebs. Um Schäden vorzubeugen sollte diezusätzliche Pumpe mit einer Halterung am Getriebe befestigt werden (jedoch nicht am Fahrgestell des LKW).

> Wenn die reihengeschalteten Pumpen auf eine separate Halterung montiert sind und durch eine Kardanwelle angetrieben werden, sollte die zweite Pumpe gegen die Pumenhalterung abgestützt sein.

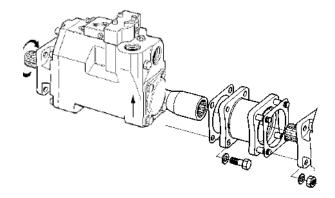
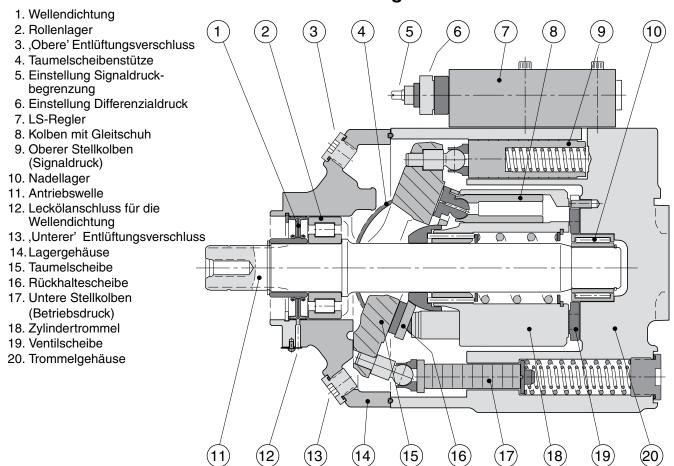
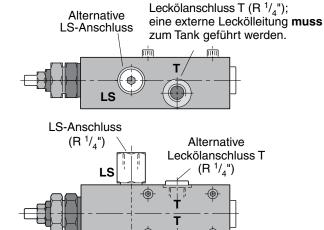


Abb. 3. Adaptersatz (P/N 379 7795) für Reihenschaltung zweier Pumpen.

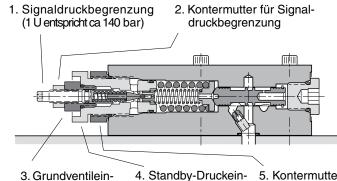
WICHTIG!


Setzen Sie sich bitte mit der Parker Hannifin in Verbindung, wenn eine zweite VP1-Pumpe reihengeschaltet werden soll. Das maximal übertragbare Drehmoment der ersten VP1-045/75-Pumpe beträgt 420 Nm.


VP1 Pumpe - variables Verdrängungsvolumen

ydraulikkompetenz.de +49 (0) 451 - 87 97 740

VP1-095/-110/-130 im Querschnittszeichnung



LS-Regler (für VP1-095/-110/-130)

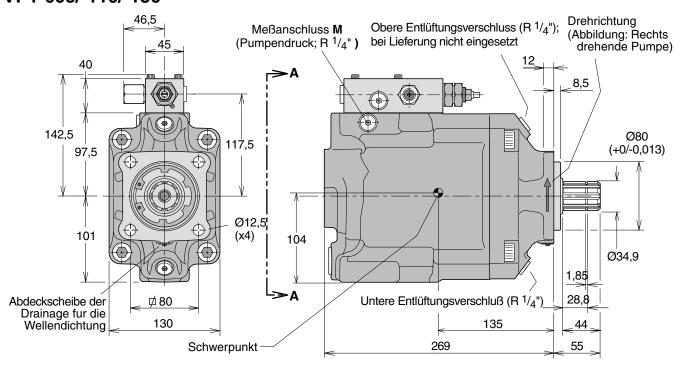
LS-Regler - Anschlüsse

HINWEIS: Nach Einstellung des Standby-Drucks oder des Höchstdrucks zuerst die Funktion überprüfen und dann können die Werte abgelesen werden.

stellung (Werkseinstellung) Nicht verstellen!

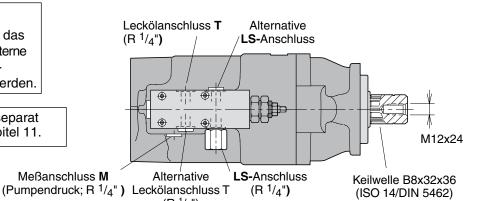
stellung (Differenzialdruck); Werkseingestellt auf 25 bar (1 U entspricht ca 17 bar)

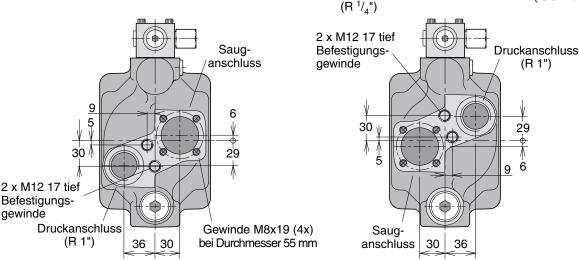
5. Kontermutter für Standby-Druckeinstellung


LS-Regler - Querschnitt.

Pos.	Schraubenschlüssel - Größe
1	Innensechskantschlüssel / 4 mm
2	Schraubenschlüssel / 13 mm
3	NICHT VERSTELLEN!
4	Schraubenschlüssel / 27 mm
5	Schraubenschlüssel / 27 mm

Abmessungen


VP1-095/-110/-130



WICHTIG!

Der LS-Regler wird nicht über das Pumpengehäuse drainiert. Eine externe Leckölleitung muß vom Leckölanschluss T zum Tank installiert werden.

NB: Der Sauganschluss muß separat bestellt werden. Siehe Kapitel 11.

Ansicht A-A (Rechtsläufige Pumpe)

ydraulikkompetenz.de

Bestellschlüssel

VP1 - 045 - L Beispiel: Nenngröße 045, 075, 095, 110 oder 130 Drehrichtung L Linksdrehend

Hinweis:

R Rechtsdrehend

Die gewünschte Drehrichtung der VP1 ist bei Bestellung anzugeben und läßt sich nicht nachträglich ändern.

Standardausführungen

Otariaaraaaorani arigori				
Bezeichnung	Bestellnr. keine Lackierung	Bestellnr. Schwarze Lackierung		
VP1-045-R	378 0334	378 6169		
VP1-045-L	378 0335	378 6170		
VP1-075-R	378 0336	378 6171		
VP1-075-L	378 0337	378 6172		
VP1-095-R	378 6000	378 6003		
VP1-095-L	378 6001	378 6002		
VP1-110-R	378 4110	378 3814		
VP1-110-L	378 4111	378 3815		
VP1-130-R	378 4500	378 4507		
VP1-130-L	378 4501	378 4508		

VP1 in Load-Sensing-Systemen

In Load-Sensing-Systemen versorgt die VP1-Pumpe die jeweilig betätigte Funktion mit dem erforderlichen Förderstrom. Verglichen mit einer Konstantpumpe im selben System, liegt die Energieaufnahme und die Hitzeentwicklung mit der VP1-Pumpe auf einem sehr viel geringeren Niveau.

Diagramm 1 zeigt den Leistungsbedarf (Durchfluß x Druck) für eine Pumpe mit konstantem Verdrängungsvolumen in einem Konstantdrucksystem.

Diagramm 2 zeigt den stark reduzierten Leistungsbedarf in einem Load-Sensing-System mit einer Variabelpumpe wie die VP1. In beiden Fällen ist der Pumpendruck etwas höher als die höchste Belastung ("Last 2") fordert, aber die VP1 benötigt wegen des viel geringeren Durchflusses nur die Leistung, die als gestrichelte Zone "Lastleistung" dargestellt ist. In einem System mit konstantem Durchfluß wird überflüssiges Hydrauliköl zum Tank geleitet und die entsprechende Leistung (Leistungsüberschuß) geht in Form von Wärme verloren.

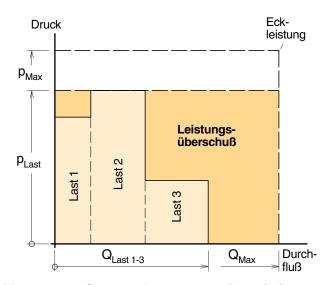


Diagramm 1. System mit konstantem Durchfluß und Pumpe mit konstantem Verdrängungsvolumen

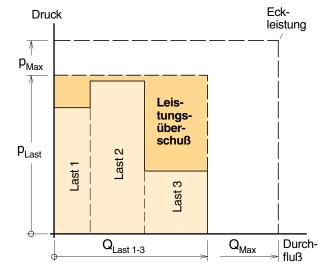


Diagramm 2. Load-Sensing-System und Pumpe mit variablem Verdrängungsvolumen (VP1).

Systemyeraleich

-,		
System	Konstantfluß	Lasterfassend
Pumpe	konst. Verdr.	VP1 var. Verdr.
Pumpensteuerung	Nur Druck	Druck und Durchfl.
Belastungen	Gewissen Einfluß	Keinen Einfluß
Energieverbrauch	Hoch	Gering
Hitzeentwicklung	Hoch	Gering

Gleichzeitige Belastungen mit unterschiedl. Drücken. Siehe Diagramme oben.

Katalog MSG30-8200/DE

Systeminformation

LS-Funktion

Siehe Hydraulik-Schaltplan unten.

Aus einem gewissen Öffnungsgrad des Wegeventils resultiert ein gewisser Durchfluß zur Arbeitsfunktion. Dieser Durchfluß führt wiederum zu einer Druckdifferenz über dem Schieber und folglich zu einem Δp zwischen der Druckseite der Pumpe und dem LS-Anschluss.

Wenn die Druckdifferenz zurückgeht (z.B. wenn das Wegeventil weiter öffnet) geht auch der Δp zurück und der Schieber des LS-Ventils bewegt sich nach links; der Druck auf die Kolben fällt und das Verdrängungsvolumen der Pumpe nimmt zu.

Die Zunahme des Verdrängungsvolumens hört auf, wenn der Δp größer wird und die auf den Schieber wirkenden Kräfte gleichgroß sind.

Wenn kein LS-Signaldruck vorliegt (z.B. wenn das Wegeventil in Mittelstellung steht = kein Durchfluß) hält die Pumpe nur den Standby-Druck aufrecht, der durch die Einstellung der Ventilfeder festgelegt ist.

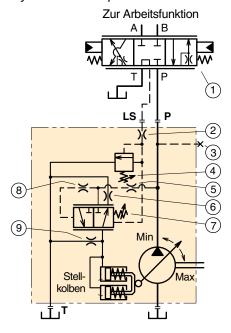
LKW-Hydraulik

VP1 Pumpe - variables Verdrängungsvolumen

Einstellung der LS-Einheit

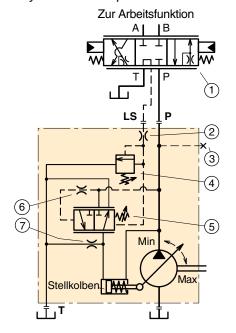
Druckbegrenzer

	Werkseingestellt [bar]	Max-Wert Spitze [bar]
VP1-045/075	350	400
VP1- 095/110/130	350	420


Standby-Druck

	Werkseinge- stellt [bar]	Min-Wert [bar]	Max-Wert [bar]
VP1-045/075	25	20	35
VP1- 095/110/130	25	15	40

Die Werksvoreinstellung und die Standardöffnung (siehe Schaltplan unten) gewährleisten normalerweise gute Betriebseigenschaften des Wegeventils und sorgen für ein stabiles System.


Für weitere Auskünfte steht Ihnen die Parker Hannifin, gerne zur Verfügung.

Hydraulik-Schaltplan für VP1-45/75.

- 1. Load-Sensing-Wegeventil
- 2. LS-Öffnung (1,0 mm; konst.)
- 3. Messanschluss
- 4. Einstellung Signaldruckbegrenzung
- 5. Systemdruck- Dämpfungsdůse (2,0 mm)
- 6. Rücklaufdüse (0,6 mm)
- 7. Einstellung Druckdifferenz (Δp)
- 8. Dämpfungsdüse
- 9. Tankdüse (0,6 mm).

Hydraulik-Schaltplan für VP1-095/-110/-130.

- 1. Load-Sensing-Wegeventil
- 2. LS-Öffnung (0,8 mm; konst.)
- 3. Messanschluss
- 4. Einstellung Signaldruckbegrenzung
- 5. Einstellung Druckdifferenz (Δp)
- 6. Dämpfungsdüse
- 7. Tankdüse (1,2 mm).

KRAUSE+KÄHLER

LKW-Hydraulik **BLA Fördereinheit**

BLA

Allgemeine Information

Die BLA Fördereinheit vereinfacht die Konstruktion geschlossener oder halbgeschlossener hydrostatischer Getriebe.

Hauptvorteile:

- Ersetzt herkömmliche Ladepumpen und entsprechende Ventile in vielen Anwendungen
- Lässt Pumpendrehzahlen über der Selbstsaugdrehzahl
- Geeignet für System-Durchflussraten bis zu 400 l/min
- Filter eingeschlossen
- Einfache Konstruktion keine beweglichen Verschleißteile
- Wirtschaftlicher Einbau
- Geringe Tankgröße
- Ermöglicht die Konstruktion eines preiswerten hydrostatischen Getriebes.

Beschreibung

In einer hydrostatischen Kraftübertragung mit geschlossenem Kreislauf ist die Ladepumpe zum Ausgleich der Volumenverluste normalerweise in der Hauptpumpe integriert. Sie erhält auch einen ausreichenden Ansaugdruck aufrecht und verhindert somit Kavitation.

Die BLA Fördereinheit ersetzt die Ladepumpe in vielen Anwendungen, sofern die folgenden Voraussetzungen gegeben sind:

- Das Durchflussverhältnis max. zu min. darf 2:1 nicht überschreiten.
- Der Systemdruck wechselt langsam ohne ständige und ausgeprägte Druckspitzen.
- Die Leitung zwischen Pumpe und Fördereinheit ist relativ kurz.

Die BLA Fördereinheit ist in zwei Grundgrößen erhältlich:

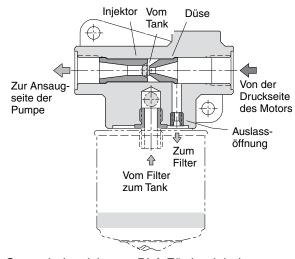
- BLA 4 (Pumpendurchfluss bis zu 160 l/min)
- BLA 6 (Pumpendurchfluss bis zu 400 l/min)

Der Hauptteil der Einheit ist ein Aluminiumgehäuse mit eingebauter Düse und einem Injektor, siehe Querschnittzeichnung rechts.

Wenn die Flüssigkeit vom Niederdruckanschluss des Motors durch die Einheit zum Sauganschluss der Pumpe fließt, bildet sich durch die erhöhte Strömungsgeschwindigkeit zwischen Düse und Injektor eine Niederdruckzone, die bewirkt, dass zusätzliche Flüssigkeit aus dem Tank in den Hauptkreis angesaugt wird.

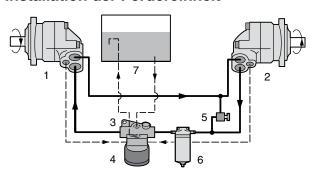
Daraus resultiert auch ein erhöhter Druck hinter dem Injektor, Leerzeichen so dass die Pumpe bei höheren Drehzahlen als der Selbstsaugdrehzahl arbeiten kann. Der 4. Filter "Ladedruck" erhöht sich mit dem Durchfluss.

Das Gehäuse hat Anschlüsse, die mit den jeweiligen Leckölanschlüssen von Pumpe und Motor zu verbinden sind.


Eine zusätzliche Auslassöffnung leitet ca. 10 Prozent des Hauptdurchflusses durch die Filterpatrone, bevor die Flüs- Weitere Informationen entnehmen Sie bitte unserem sigkeit in den Tank eingeleitet wird.

Typische Anwendungsbereiche:

- Lüftungsantriebe
- Propellerantriebe
- Generatorantriebe
- Pumpenantriebe


Ölkühlung

Ein Ölkühler, der die im Hauptkreis entstehende Hitze ableitet, ist normalerweise in Hydrauliksystemen erforderlich. Ein Hauptstromkühler sollte in der Rücklaufleitung zwischen Motor und Fördereinheit eingebaut werden.

Querschnittzeichnung BLA Fördereinheit

Installation der Fördereinheit

- 1. Pumpe
- 2. Motor
- 3. Fördereinheit (mit Injektor und Düse)

- 5. Druckbegrenzungsventil
- 6. Hauptstromfilter (falls erforderlich)
- 7. Tank

technischen Katalog BLA Boost Unit MSG30-8224/DE.

Sauganschlüsse

für Pumpen der Serien F1, T1, F2, F3 und VP1-095, -110 und -130

Ein ,Sauganschluss' in gerade, 45°, 90° oder 135° besteht aus Sauganschluss, 2 Klammern, 2 Innensechskant-Schrauben und einem O-Ring.

NB: Ein Sauganschluss muß immer separat bestellt werden (wird nicht mit der Pumpe geliefert). Für auswahl der geeigneten Leitungsabmessung, siehe Kapitel 2.

Sauganschlüsse für VP1-045/075 siehe Seite 57

Gerader Sauganschlüsse für F1, T1, F2, F3, VP1-095/-110/-130

Bestellnr.	A mm	B mm	ØC dia. mm (in.)
378 0635 ¹⁾	0	85	38 (11/2")
378 0636 ²⁾	17	136	50 (2")
378 0637 ³⁾	25	145	63 (2 ¹ / ₂ ")
378 3523 ³⁾	32	174	75 (3")

45°-Sauganschlüsse F1, T1, F2, F3, VP1-095/-110/-130

Bestellnr.	A mm	B mm	ØC dia. mm (in.)
378 1234 ¹⁾	60	104	32 (1 ¹ / ₄ ")
378 0633 ¹⁾	60	104	38 (11/2")
378 0364 ²⁾	67	110	50 (2")
378 0634 ³⁾	75	117	63 (2 ¹ / ₂ ")
378 33673)	95	138	75 (3")
378 1062	67	110	40
378 0975	67	110	45

90°-Sauganschlüsse F1, T1, F2, F3, VP1-095/-110/-130

Bestellnr.	A mm	B mm	ØC dia. mm (in.)
378 09781)	126	83	38 (11/2")
378 0979 ²⁾	135	83	50 (2")
378 1980 ³⁾	147	83	63 (2 ¹ / ₂ ")
378 0976	135	83	45
378 8690 ³⁾	185	83	75 <i>(3")</i>

145°-Sauganschluss F1, T1, F2, F3, VP1-095-110/-130

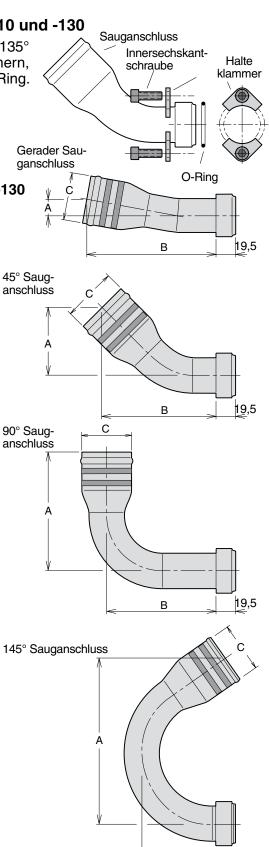
Bestellnr.	A mm	B mm	ØC dia. mm (in.)
378 1867	165	73	50 (2")

- 1) Für Baugröße F1-25 empfehlen.
- 2) Für Baugröße F1-41,-51,-61,-81, -101 empfehlen.
- 3) (3 Klammern und 3 Schrauben)

Montage - Ersatzteilsätze für Sauganschlüsse

Montagesatz bestehend aus:

Halteklammer, Innensechskantschraube und O-Ring


Bestellnummer: 378 1321

Montagesatz für die Befestigung an Bypass-Ventil BPV:

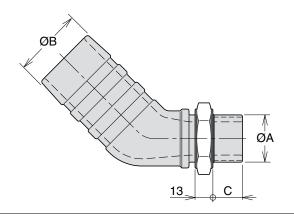
56

Bestellnummer: 378 2439

В

19,5

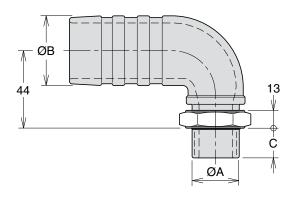
KRAUSE+KÄHLER Hydraulikkompetenz.de+49 (0) 451 - 87 97 740


Sauganschlüsse für F1 und VP1-045/-075 mit BSP-Anschlussgewinde

NB: Ein Sauganschluss muß immer separat bestellt werden (wird nicht mit der Pumpe geliefert). Für auswahl der geeigneten Leitungsabmessung, siehe Kapitel 2.

45°-Sauganschluss

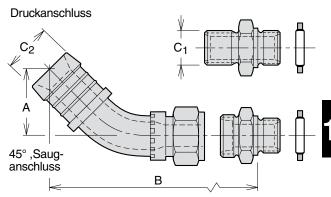
Bestellnr.	ØA	ØB inch	C mm
00509035016	BSP 1" 1)	2"	18
00509035116	BSP 11/4"	2"	18
00509021916	BSP 11/4"	21/2"	18


¹⁾ nicht fürVP1-045/-075

90°-Sauganschluss

Bestellnr.	ØA	ØB inch	C mm
00509034516	BSP 1" 1)	2"	18
00509034616	BSP 11/4"	2"	18

¹⁾ nicht für VP1-045/-075



Nippelsätze für VP1-045 und -075-Pumpen

Sätze mit 45°-Sauganschluss

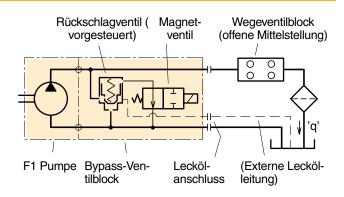
Bestellnr.	C ₁	ØC ₂ inch	A mm	B mm
379 9563	BSP 3/4"	2"	71	154
379 9562	BSP 1" *	2 1/2"	64	147

^{*} Über 100 l/min

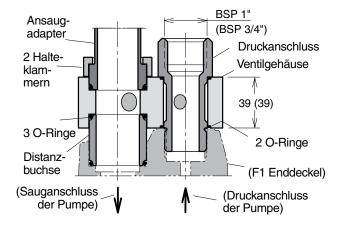
Bypass-Ventile

Bypass-Ventile für F1, F2, T1 und VP1 Pumpen

Inhalt Se	ite
Bypass-Ventile BPV-F1 und T15	59
Technische Information5	59
Bestelldaten und Abmessungen6	0
BPV-F1 und BPV-T1 Bypass-Ventil ohne Nothandbetätigung6	0
BPV-F1 Bypass-Ventil mit Nothandbetätigung6	30
Bypass-Ventil BPV-F26	31
Technische Information6	31
Bestelldaten und Abmessungen6	32
BPV-F2 Bypass-Ventil ohne Nothandbetätigung6	32
Bestelldaten und Abmessungen6	3
BPV-F2 Bypass-Ventil mit Nothandbetätigung6	3
BPV-F1, -T1 und F2 Zubehör / Ersatzteile6	34
Leitungsmontiertes Bypass-Ventil BPV-L6	35
Bypass-Ventil BPV-VP16	6


LKW-Hydraulik **Bypass-Ventile**

Bypass-Ventile BPV-F1 und T1


- Mit einem Bypass-Ventil ausgerüstete F1-Pumpe eignet sich für Konstantdruck-Anwendungen, wenn die Pumpe z.B. über Kardanwelle durch die Kurbelwelle angetrieben wird oder an den Motor-Nebenabtrieb angeschlossen ist.
- Das BPV (Bypass-Ventil) wird während konstanter Anwendung bei max. Drehzahl des normalen Betriebes nicht angesteuert. Das Hydrauliksystem ist nicht für den großen Durchfluss, der normalerweise auftritt, ausgelegt.
- Das Bypass-Ventil verbindet Ansaug- und Druckanschluss der Pumpe. Nur eine geringe Ölmenge strömt durch das System zum Tank.
- Das Ventil wird über einen "Banjo"-Anschluss bzw. eine Distanzbuchse mit 2 Imbusschrauben direkt an den Druckbzw. Ansauganschluss der Pumpe angeschlossen.
- Das symmetrische Bypass-Ventil läßt sich um 180° drehen, so daß Kolissionen mit Fahrgestellteilen verhindert werden können.
- Das Ventil läßt sich nur bei unbelastetem System aktivieren bzw. deaktivieren (über das Magnetventil). Es funktioniert bei offener Mittelstellung und bewirkt geringen Druckabfall bei niedrigem Durchfluß.

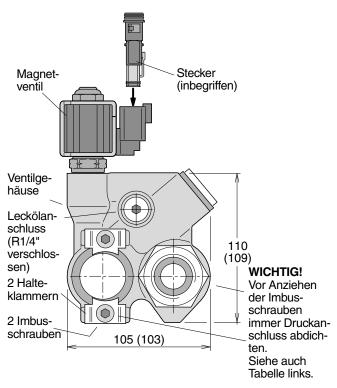
WICHTIGER HINWEIS!

- Um einen Kühlstrom durch den Hydraulik-Kreislauf zu gewährleisten, muß der Leckölanschluss am BPV-F1 angeschlossen werden und direkt zum Tank geführt werden. (siehe BPV-F1 Installation Information Bulletin MSG30-8227-INST/UK/DE, nebenstehenden Schaltplan und Explosionszeichnung).
- Bevor der Sauganschluss montiert wird, müssen die beiden Druckanschlüsse eingeschraubt sein. (Anzugmoment 50 Nm)

Schaltplan Bypass-Ventil.

KRAUSE+KÄHLER

Bypass-Ventile


BPV-F1 und BPV-T1 Bypass-Ventil

Ohne Nothandbetätigung

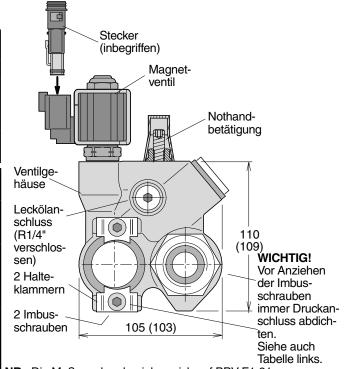
Bypass-Ventil, Typ	BPV-F1-25 bis -101 und BPV-T1-81 und -121
Max. Arbeitsdruck	350 bar
Höchstdruck	400 bar
Magnetventil-Spannung (Option)	24 VDC, (12 VDC)
Erforderliche Leistung	14 W
Betriebsart	Magnetventil aktiv: Bypass-Ventil geschlossen

Bypass- Ventil	Span- nung	Bestell- nummer	Für F1 und T1 Größe	Drehmo- ment ¹⁾
BPV-F1, BPV-T1	24 VDC 12 VDC	378 7201 378 7202	F1 -25 ²⁾ , -41, -51, -61 und T1 -81	50 Nm
BPV-11		378 7203 378 7204	F1 -81, -101 und T1 -121	100 Nm
Lecköl-Anschluss Kit F1-025 ²⁾		378 1640	enthält Verschr Dichtring und D	· · ·
Lecköl-Anschluss Kit übrige F1, T1 und F2		378 3039	enthält Verschraubung und Dichtring.	
			N.B. Im komple Bypassventil er	

- 1) Drehmoment für Druckanschluss bis
- Der Lecköl-Anschluß-Kit 378 1640 für F1-025 muß separat bestellt werden.

NB: Die Maßangaben beziehen sich auf BPV-F1-81; (die Maßangaben für BPV-F1-25 stehen in Klammern) Montage- und Querschnittzeichnung des Bypass-Ventils ohne Nothandbetätigung.

BPV-F1 und BPV-T1 Bypass-Ventil


Mit Nothandbetätigung

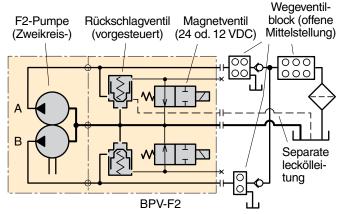
Bypass-Ventil, Typ	BPV-F1-25 bis -101 und BPV-T1-81 und -121
Max. Arbeitsdruck	350 bar
Höchstdruck	400 bar
Magnetventil-Spannung	24 VDC
Erforderliche Leistung	14 W
Betriebsart	Magnetventil aktiv: Bypass-Ventil geschlossen

Dypass vertal geschiossen					
Bypass- Ventil	Span- nung	Bestell- nummer	Für F1 und T1 Größe	Drehmo- ment ¹⁾	
BPV-F1, BPV-T1	24 VDC	378 4179	F1 -25 ²⁾ , -41, -51, -61 und T1 -81	50 Nm	
IDFV-II	24 VDC	378 4180	F1 -81, -101 und T1 -121	100 Nm	
Lecköl-Anschluss Kit F1-025 ²⁾		378 1640	enthält Verschraubung, Dichtring und Drossel.		
Lecköl-Anschluss Kit übrige F1, T1 und F2		378 3039	enthält Verschraubung und Dichtring.		
			N.B. Im komple Bypassventil ei		

I) Drehmoment für Druckanschluss bis

 Der Lecköl-Anschluß-Kit 378 1640 für F1-025 muß separat bestellt werden.

NB: Die Maßangaben beziehen sich auf BPV-F1-81; (die Maßangaben für BPV-F1-25 stehen in Klammern) Montage- und Querschnittzeichnung des Bypass-Ventils mit Nothandbetätigung.


LKW-Hydraulik **Bypass-Ventile**

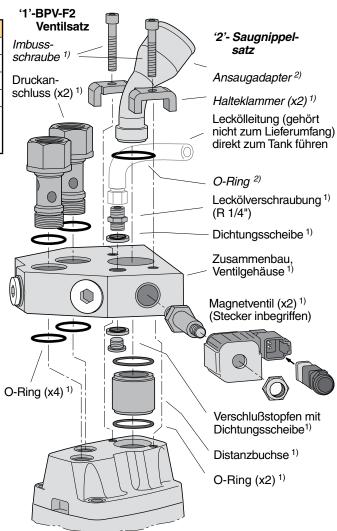
Bypass-Ventil BPV-F2

- Eine mit Bypass-Ventil ausgerüstete F2-Zweikreispumpe eignet sich für Konstantdrucksysteme, wenn die Pumpe z.B. über Kardanwelle durch die Kurbelwelle angetrieben wird oder an den Nebenabtrieb angeschlossen ist.
- Mit Bypass-Ventil lassen sich auch die Leistungsverluste minimieren, wenn vorübergehend nur ein Pumpenkreis benötigt wird.
- Das BPV (Bypass-Ventil) wird während konstanter Anwendung bei max. Drehzahl des normalen Betriebes nicht angesteuert. Das Hydrauliksystem ist nicht für den großen Durchfluss, der normalerweise auftritt, ausgelegt.
- Das Bypass-Ventil verbindet Saug- und Druckanschluss der Pumpe. Nur eine geringe Ölmenge strömt durch das System zum Tank.
- Das Ventil wird mit Banjo-Anschlüsse an den Druckanschluss bzw. mit einer Distanzbuchse und 2 Imbussschrauben an den Sauganschluss der Pumpe angeschlossen (siehe Abb. rechts).
- Das symmetrische Ventil lässt sich um 180° drehen um Kontakt mit Fahrgestell-Teilen zu verhindern. Es eignet sich für links- wie rechtsdrehende Pumpen.
- Das Bypass-Ventil lässt sich nur bei unbelastetem System (Arbeitsdruck unter 20 bar) aktivieren und deaktivieren (durch das 24 oder 12 VDC Magnetventil).

WICHTIGER HINWEIS!

- Um einen Kühlstrom durch den Hydraulik-Kreislauf zu gewährleisten, muß der Leckölanschluss am BPV-F2 angeschlossen werden und direkt zum Tank geführt werden. (siehe nebenstehenden Schaltplan und Explosionszeichnung).
- Bevor der Sauganschluss montiert wird, müssen die beiden Druckanschlüsse eingeschraubt sein. (Anzuamoment 50 Nm)

Schaltplan BPV-F2 Bypass-Ventil (Beispiel).


BPV-F2 Bypass-Ventil

Ohne Nothandbetätigung

Bypass-Ventil, Typ	BPV-F2
Max. Arbeitsdruck	350 bar
Höchstdruck	400 bar
Magnetventil-Spannung (Option)	24 VDC, (12 VDC)
Erforderliche Leistung	14 W (pro Magnetventil)
Betriebsart	Magnetventil aktiv:
	Bypass-Ventil geschlossen

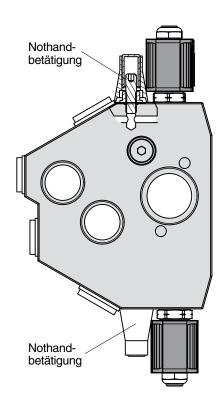
Bypass-	Span-	Bestell-	Für F2 Größe	Drehmo-
Ventil ¹⁾	nung	nummer		ment ³⁾
BPV-F2,			42/42, 53/53, 55/28, 70/35, 70/70	50 Nm

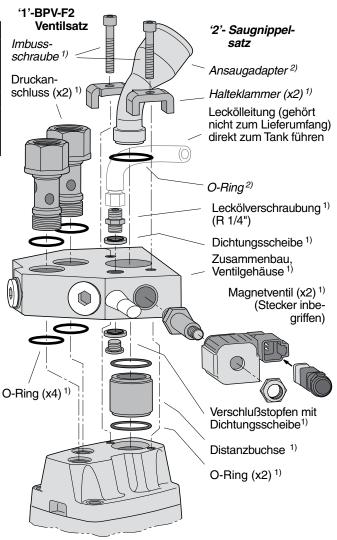
- Der BPV-F2 Ventilsatz besteht aus den mit "1" gekennzeichneten Teilen in der rechts gezeigten Explosionszeichnung.
- 2) Der Ansaug-Adaptersatz besteht aus den mit "2" gekennzeichneten Teilen in der Explosionszeichnung. Er gehört nicht zum Lieferumfang der F2-Pumpe und muss immer separat bestellt werden. (siehe Kapitel 11).
- 3) Drehmoment für Druckanschluss bis

Montagezeichnung des BPV-F2 Bypass-Ventils ohne Nothandbetätigung (mit F2 Enddeckel).

NB: Der Ansaug-Adaptersatz besteht aus den mit "2" gekennzeichneten Teilen in der Explosionszeichnung. Er gehört **nicht** zum Lieferumfang der F2-Pumpe und muß immer separat bestellt werden. (siehe Kapitel 11).

Bypass-Ventile


BPV-F2 Bypass-Ventil


Mit Nothandbetätigung

Bypass-Ventil, Typ	BPV-F2
Max. Arbeitsdruck	350 bar
Höchstdruck	400 bar
Magnetventil-Spannung	24 VDC
Erforderliche Leistung	14 W (pro Magnetventil)
Betriebsart	Magnetventil aktiv: Bypass-Ventil geschlossen

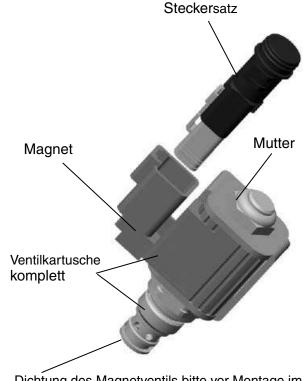
Bypass- Ventil ¹⁾		Bestell- nummer	Für F2 Größe	Drehmo- ment ³⁾
BPV-F2,	24 VDC	378 4377	42/42, 53/53, 55/28, 70/35, 70/70	50 Nm

- 1) Der BPV-F2 Ventilsatz besteht aus den mit "1" gekennzeichneten Teilen in der rechts gezeigten Explosionszeichnung.
- 2) Der Ansaug-Adaptersatz besteht aus den mit "2" gekennzeichneten Teilen in der Explosionszeichnung. Er gehört nicht zum Lieferumfang der F2-Pumpe und muss immer separat bestellt werden. (siehe Kapitel 11).
- 3) Drehmoment für Druckanschluss bis

ydraulikkompetenz.de +49 (0) 451 - 87 97 740

Montagezeichnung des BPV-F2 Bypass-Ventils mit Nothandbetätigung (mit F2 Enddeckel).

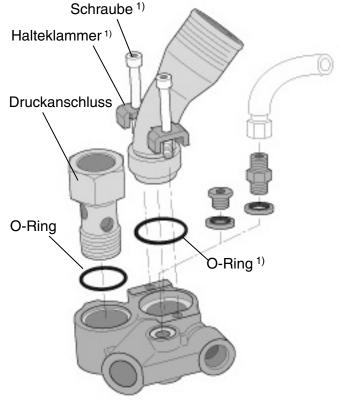
NB: Der Ansaug-Adaptersatz besteht aus den mit "2" gekennzeichneten Teilen in der Explosionszeichnung. Er gehört nicht zum Lieferumfang der F2-Pumpe und muß immer separat bestellt werden. (siehe Kapitel 11).



Hydraulikkompetenz.de +49 (0) 451 - 87 97 740

Bypass-Ventile

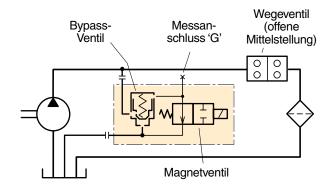
BPV-F1, -T1, F2 und F3 Zubehör / Ersatzteile


Bestellnr.	Bezeichnung	Anmerkung
3787496	Magnet 24V	Inkl. neuer Stecker
3787497	Magnet 12V	Inkl. neuer Stecker
3787494	Ventilkartusche komplett 24V	Inkl. neuer Stecker
3787495	Ventilkartusche komplett 12V	Inkl. neuer Stecker
3785948	Mutter für Ventilkartusche	
3787488	Steckersatz	

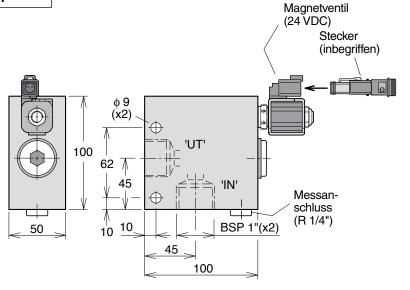
Dichtung des Magnetventils bitte vor Montage im Ventilblock einfetten.

Bestellnr.	Bezeichnung	Anmerkung
3781480	Druckanschluss	F2 (alle Größe)
3781082	Druckanschluss	F1-25, -41, -51, -61 und T1-81
3781094	Druckanschluss	F1-81, -101, T1-121 und F3-81, -101
3780641	O-Ringsatz	Für F1, T1, F2 und F3 (alle Größe)
3782439	Montagesatz Ansaugadapter 1)	Für BPV F1, T1, F2, und F3

1) Montagesatz für Ansaugadapter auf Bypass-Ventil für F1, T1, F2 und F3 (Der Montagesatz besteht aus den mit "1" gekennzeichneten Teilen in der Explosionszeichnung).



Hydraulikkompetenz.de +49 (0) 451 - 87 97 740


Technische Information Bypass-Ventile

Leitungsmontiertes Bypass-Ventil BPV-L

- Das Bypass-Ventil ist für Systeme vorgesehen, in denen die Pumpe mit konstantem Verdrängungsvolumen ständig in Betrieb und kein Durchfluss erforderlich ist, wie z.B. während des Transports. Der Förderstrom wird durch das Bypass-Ventil geleitet, wodurch Druckverluste und Hitzeentwicklung minimiert werden.
- Wenn das Magnetventil aktiviert ist, schließt das Bypass-Ventil, und der Förderstrom wird zum Wegeventil oder zu einem anderen Verbraucher geleitet.

Bypass-Ventil, Typ	BPV-L
Max. Arbeitsdruck [bar]	350
Max. Durchfluss [I/min]	250
Magnetventil [VDC]	24
Leistungsbedarf [W]	14
Ventilfunktion	Magnetventil aktiviert: Rückschlagventil geschlossen
Bestellnummer	378 1487

Einbau von BPV-VP1 an einem Motornebenantrieb **Bypass-Ventil BPV-VP1**

Das Entlastungsventil BPV-VP1 kommt in Hydraulikanlagen zum Einsatz, in denen die Pumpe im Dauerbetrieb arbeitet.

Das Ventil schützt die Pumpe vor Überhitzung im unbelasteten Zustand, indem es einen geringen Durchfluss durch die Pumpe ermöglicht. Bei eingeschalteter Lasterkennungsfunktion des Ventils wird der Nebenstrom unterbrochen (weil Anschluss X unter Druck gesetzt wird).

Das Ventil entlüftet außerdem die Ansaugleitung und den Pumpenkörper nach langem Stillstand.

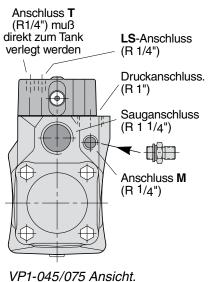
(Die Pumpe wird über dem Öltank eingebaut. Während des Stillstands läuft ein Teil des Öls aus dem Pumpengehäuse zurück in den Öltank.)

		53	G 1/4" (x3)	φ 6.5 (x2)
51.5				32
		T	P +	8.5
< 30 >	40	41 > 92	9) -

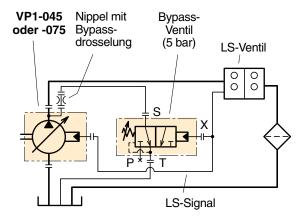
BPV-VP1 Bypass-Ventil.

Ventiltyp	Bestellnummer
BPV-VP1	379 8799

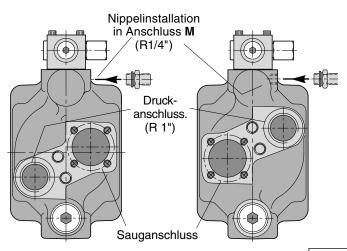
N.B.: - BPV-VP1 mit VP1-045 oder -075, und - BPV-VP1 mit VP1-095, -110 oder -130, siehe nächste Seite

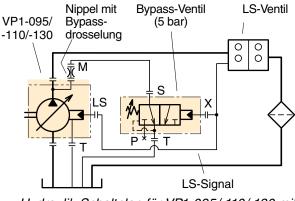

Weitere Informationen siehe auch MSG30-8226-INST/UK, Einbauhinweise Entlastungsventil BPV für VP1

KRAUSE+KÄHLER


LKW-Hydraulik **Bypass-Ventile**

VP1-045/-075 mit BPV-VP1 Bypass-Ventil

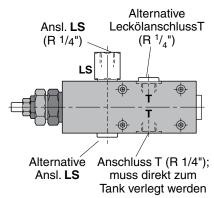

N.B.:


- Montage der
 Leckölverschraubung
 am Anschluss M und mit
 Anschluss S am BypassVentil verbinden, (siehe
 Hydraulik Schaltplan).
- Nippel/Leckölverschraubung mit eingeschraubter Bypass Drossel.
- Leckölverschraubung gehört zum Lieferumfang Die Gewindeanschlüsse für die Verschraubung sind 1/4" BSP Gewinde. Durchmesser der Gewindeanschlüsse sind Ø1,5 mm.

Hydraulik-Schaltplan für VP1-045/-075 mit BPV-VP1.

VP1-095/-110/-130 mit BPV-VP1 Bypass-Ventil

Hydraulik-Schaltplan für VP1-095/-110/-130 mit BPV-VP1.


Linksläufige Pumpe

Rechtsläufige Pumpe

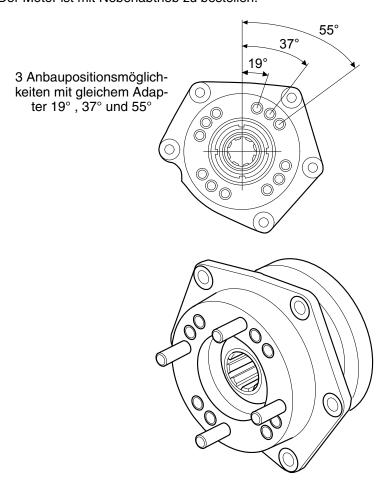
VP1-095/-110/-130 Anschluss M für Nippelinstallation.

N.B.:

- Montage der Leckölverschraubung am Anschluss M und mit Anschluss S am Bypass-Ventil verbinden, (siehe Hydraulik Schaltplan).
- Nippel/Leckölverschraubung mit eingeschraubter Bypass Drossel.
- Leckölverschraubung gehört zum Lieferumfang Die Gewindeanschlüsse für die Verschraubung sind 1/4" BSP Gewinde. Durchmesser der Gewindeanschlüsse sind Ø1,5 mm.

Regleranschlüsse (VP1-095/-110/-130)

Zubehör


Betätigungssatz und Zubehör für F1, F2, T1 und VP1 Pumpen

Inhalt Seit	е
Nebenabtriebe (PTO) Adaptersatz:	
Adaptersatz für Scania ED 120 und 160 Motoren69	
Adaptersatz für Mercedes-Benz Motoren (R6)70	
Adaptersatz für Mercedes-Benz Motoren (V6, V8)70	
Adaptersatz für MAN Motoren (D20, D26)70	
Kardanwellen, Pumpenkupplungen und Montagesätze71	
Spezifikation, Kardanwelle71	
Anbauflanschadapter71	
Pumpenkupplungen72	
Verteilergetriebe SB73	
Empfehlungen73	
Installationshinweise:	
Installation des Verteilergetriebes74	

Adaptersatz für Scania ED 120 und 160 Motoren

- Der Adaptersatz ermöglicht die Installation einer Hydropumpe nach ISO-Norm (z.B. F1 od. VP1) auf dem Nebenabtrieb des 12-Liter-Motors von Scania.
- Der Nebenabtrieb wird mit dem Fahrgestell geliefert.
- HINWEIS: Der Motor ist mit Nebenabtrieb zu bestellen.

ED 120 ED 160

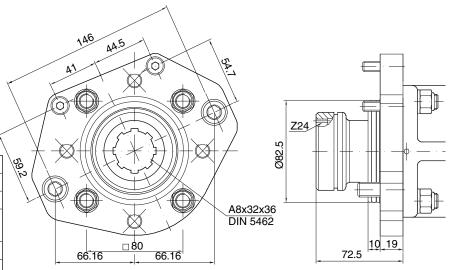
Technische - Daten	
Max. Drehmoment [Nm]	600
Übersetzung (Motor : Pumpe)	1:1.19
Drehrichtung	Rechts (im Uhrzeigersinn)

rechnische - Daten	
Max. Drehmoment [Nm]	600
Übersetzung (Motor : Pumpe)	1:1.19
Drehrichtung	Links (gegen den Uhrzeigersinn)

Adaptersatz für Nebenabtrieb	Bestellnummer
ED120, Mit Stützlager	378 9592
19°, 37°, 55°	

Adaptersatz für Nebenabtrieb	Bestellnummer
ED-160, Mit Stützlager 19°, 37°, 55°	378 9970

LKW-Hydraulik **Zubehör**

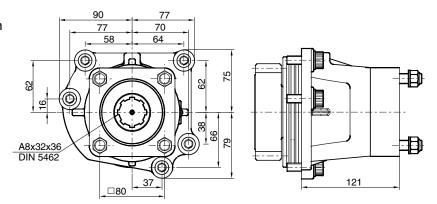

Adaptersatz für Mercedes-Benz Motoren (R6) Z = 16Der Adaptersatz ermöglicht die Instal-DIN 5480 Für ISO-Flansch. lation einer Hydropumpe nach ISO-4 Schrauben A8x32x36 Norm auf dem Nebenabtrieb **DIN 5462** der R6-Motoren von Mercedes. Drehmoment 300 Nm Dauerbetrieb Ø101,6 (4") Kurzzeitbelastung 330 Nm Übersetzung 1:1,071 (Motor: Pumpe) Drehrichtung im Uhrzeigersinn Bestellnummer 0050706404 146 (5 3/4") 75 Für SAE "B"

Adaptersatz für Mercedes-Benz Motoren (V6, V8)

Der Adaptersatz ermöglicht die Installation einer Hydropumpe nach ISO-Norm auf dem Nebenabtrieb der V6und V8-Motoren von Mercedes.

Der Adaptersatz 00507012104 kann angebaut werden, an den Qriginal Mercedes-Benz-Abtriebflansch SAE-A, der gemeinsam mit dem neuen ACTROS von Daimler Chrysler geliefert wird.

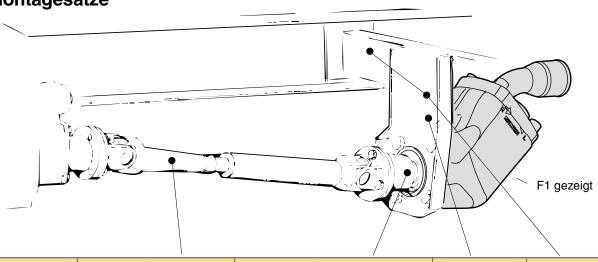
Drehmoment	
Dauerbetrieb	390 Nm
Kurzzeitbelastung	470 Nm
Übersetzung	1:1,15
(Motor : Pumpe)	
Drehrichtung	im Uhrzeigersinn
Bestellnummer	00507012104


2 Schrauben

Adaptersatz für MAN Motoren (D20, D26)

Der Adaptersatz ermöglicht die Installation einer Hydropumpe nach ISO-Norm auf dem Nebenabtrieb der D20-Motoren von MAN.

PTO adapter	D20, D26
Drehmoment	
Dauerbetrieb	400 Nm
Kurzzeitbelastung	570 Nm
Übersetzung	1:1,233
(Motor : Pumpe)	
Drehrichtung	im Uhrzei-
	gersinn

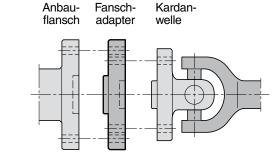

PTO-Adapter	Bestellnummer
D20, D26	0050081903

Hydraulikkompetenz.de +49 (0) 451 - 87 97 740

Kardanwellen, Pumpenkupplungen und Montagesätze

		,		/	1	\
Pumpe oder Ver-	Kardanv	vellensatz	Pump	enkupplung	Montagesatz	Montagesatz
teilergetriebe, Typ	Тур	Bestellnr.	Тур	Bestellnr.	Bestellnr.	Bestellnr.
F1 ¹⁾	SAE 88 ¹⁾	73 001	SAE 88 ¹⁾	370 4628	379 7831	379 7832
F1 (Plus)	SAE 88 ¹⁾	73 001	SAE 88 ¹⁾	378 0644	379 7831	379 7832
F1 (Plus)	SAE 97	370 0315	SAE 97	378 0645	379 7831	379 7832
F1	SAE 97	370 0315	SAE 97	370 4631	379 7831	379 7832
F2	SAE 97	370 0315	SAE 97	370 4631	379 7831	379 7832
T1-51	SAE 97	370 0315	SAE 97	370 4631	379 7831	379 7832
VP1	SAE 97	370 0315	SAE 97	370 4631	379 7831	379 7832
SB154, SB118	SAE 97	370 0315	SAE 97/	In Verteilerge-		370 5220
			DIN 90	triebe inbegriffen		

¹⁾ Kardanwelle und Pumpenkupplung Typ SAE 88 können auch zum Antrieb der Pumpen F2, T1-51 oder VP1 benutzt werden, solange das max. Drehmoment (siehe unten) nicht überschritten wird.


Spezifikation, Kardanwelle

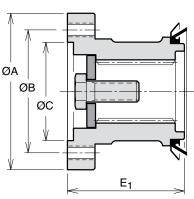
Kardanwelle, Typ	Bezeichnung	Max. Länge [mm]	Durchmesser [mm]	Max. Drehmoment Spitze/Dauer [Nm]	Bestell- nummer
SAE 88	K1140	1500	45	600/300	73 001
SAE 97	K1310	1500	50	1000/500	370 0315

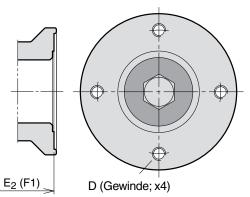
Anbauflanschadapter

Kardanwelle, Typ	Anbauflansch, Typ	Flanschadapter, Bestellnr.
SAE 97	SAE 116	370 5896
SAE 116	SAE 97	370 5897 ³⁾
DIN 100	DIN 90	370 5899 ³⁾

3) ACHTUNG! Das max. Drehmoment der Kardanwelle (siehe oben) darf nicht überschritten werden.

KRAUSE+KÄHLER


Technische Information


LKW-Hydraulik Zubehör

Pumpenkupplungen

b		
Bezeichnung	DIN 90 (Abb. 1)	
Α	90	
В	74,5	
С	47 h7	
D	M8	
E ₁	61,5	
E ₂ (F1)	57,2	
VP1, F2, F1*	370 4634	
F1	378 0642	

HINWEIS: Das max. Drehmoment ist durch die Kardanwelle begrenzt. Abb. 1. DIN 90 (370 4634)

(378 0642)

Bezeichnung	DIN 90 (Abb. 2)
Α	90
В	74,5
С	47 h7
D	8,2
E ₁	61,5
VP1, F2, F1*	370 7423

HINWEIS: Das max. Drehmoment ist durch die Kardanwelle begrenzt.

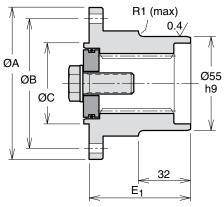
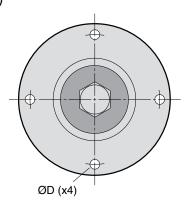



Abb. 2. DIN 90 (370 7423)

Bezeichnung	SAE88 (Abb. 3)
Α	88
В	69,9
C	57.15 H8
D	⁵ / ₁₆ " UNC
E ₁	59,5
Max. Dreh-	600/300
moment [Nm]	
Spitze/Dauer	
F1	378 0644

ØΑ ØB ØC E₁

Abb. 3. SAE 88 (378 0644)

D (Gewinde; x4)

Bezeichnung	SAE97 Abb. 4)
Α	97
B C	79,4
	60.33 H8
D	3/ ₈ " UNC
E ₁	65
E ₂ (F1)	59,5
Max. Dreh-	1000/500
moment [Nm]	
Spitze/Dauer	
VP1, F2, F1*	370 4631
F1	378 0645

F1* Alte Ausführungen

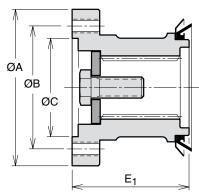
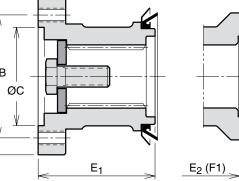



Abb. 4. SAE97 (370 4631)

(378 0645)

10°

D (Gewinde; x4)

LKW-Hydraulik **Zubehör**

Verteilergetriebe SB

- Das Verteilergetriebe wird benutzt, um zwei Pumpen anzutreiben, wenn zwei voneinander unabhängige Verdrängungsvolumen gewünscht sind.
- Dank des hohen Drehmoments können zwei große Pumpen gleichzeitig angetrieben werden. Es ist jedoch sicherzustellen, dass Nebenabtrieb und Kardanwelle der vorgesehenen Belastung halten.
- Anbauflansch und Wellenende der Pumpe müssen der ISO-Norm entsprechen.
- Das Verteilergetriebe ist mit zweierlei Übersetzungsverhältnissen (Antriebswelle:Pumpe) erhältlich:

SB 118 - 1:1,18 **SB 154** - 1:1,54

 Die Verpackung enthält alle für die Installation der beiden Pumpen erforderlichen Teile.

Empfehlungen

Anhand folgender Tabelle kann kontrolliert werden, dass die Höchstdrehzahl der Pumpe und das max. Drehmoment des Verteilergetriebes nicht überschritten werden.

Pumpen-	Max. Drehzahl [U/min]		
größe	SB 118	SB 154	
F1-25	2200	1650	
F1-41	2000	1550	
F1-51	1850	1400	
F1-61	1850	1400	
F1-81	1650	1250	
F1-101	1500	1150	

Beispiel: Ein SB 118 mit einer F1-025 und einer F1-081: Eingangsdrehzahl Verteilergetriebe max. 1650 U/min. Ein SB 154 mit denselben Pumpen: Eingangsdrehzahl Verteilergetriebe max. 1250 U/min. (2 1/2").

Pumpen-	Eingangsmoment, Pumpe [Nm] bei			
größe	250 bar	300 bar	350 bar	
F1-25	101	122	142	
F1-41	162	195	227	
F1-51	203	243	284	
F1-61	236	284	331	
F1-81	324	388	453	
F1-101	412	495	577	

Beispiel: Eine F1-041 bei 350 bar fordert 227 Nm und

eine F1-061 bei 300 bar fordert 284 Nm. Gesamtmoment des Verteilergetriebes: SB 118 und SB 154: (227 + 284) = 511 Nm. Zu vergleichen mit max. zulässigem Moment

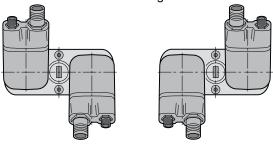
(Spitze 1000 Nm; Dauerbetrieb 700 Nm).

HINWEIS: Wenn das Verteilergetriebe nahe am höchst zulässigen Drehmoment und/oder nahe an der zulässigen Höchstdrehzahl angewandt werden soll, setzen Sie sich bitte mit Parker Hannifin in Verbindung.

Installationshinweise:

1.Serien F1 und T1 (Abb. 2)

Gültig: Bei Dauerbetrieb von unter 30 min und/oder einer kontinuierlichen Ausgangsleistung von weniger als 80 kW.


- Oberen Verschlussstopfen abnehmen und 0,5 I Shell Spirax AX (oder gleichwertige Flüssigkeit) einfüllen.
- Luftventil (und falls erforderlich 90°-Adapter, Artikelnr. 378 1069) installieren.

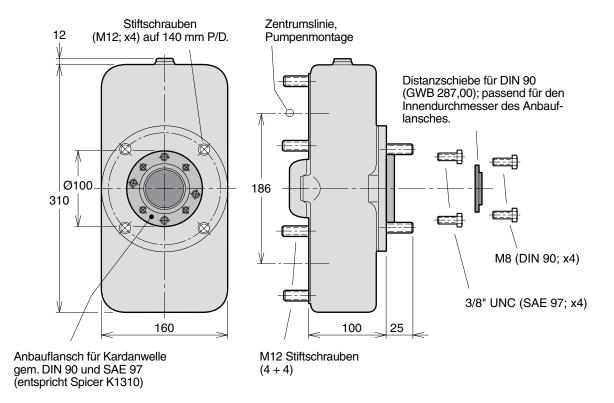
HINWEIS: Die Wellendichtung der F1 oder T1 darf nicht entfernt werden.

2.Serie F1 (rechte Illustration, Abb. 3)

Gültig: Bei Dauerbetrieb von über 30 min und/oder einer kontinuierlichen Ausgangsleistung von mehr als 80 kW

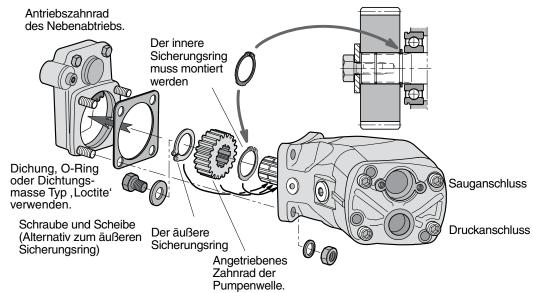
- Schlauchsatz 378 1085 zwischen dem niedrigsten Leckölanschluss einer der beiden Pumpen (siehe Abb. 3) und den unteren Leckölanschluss des Verteilergetriebes anschließen.
- Einen Lecköl-Schlauch zwischen dem Leckölanschluss an der Seite des Verteilergetriebes und dem Tank anschließen; das Schlauchende muss unter dem niedrigsten Ölstand im Tank liegen.
 Einen der Banjo-Anschlüsse verwenden, die mit dem Schlauchsatz 378 1085 geliefert werden.

HINWEIS: Die Sauganschlüsse der Pumpen sollen immer der Mitte des Verteilergetriebes zugewandt sein (sie Abb.), damit internen Getriebekräften entgegengewirkt wird.


Abb. 1. F1-Pumpen, auf Verteilergetriebe installiert.

Bezeichnung	SB 118	SB 154	
Übersetzung	1:1,18	1:1,54	
Max. Drehmoment Spitze/Dauerbetrieb [Nm]	1000/700		
Max. Leistung	Die Öltemperatur im Getriebegehäuse darf nicht über 75°C steigen.		
Gewicht [kg]	11,5		
Bestell-Nr., mit Stützlager	00506010699	00506010599	

Installation des Verteilergetriebes


Einbau und Inbetriebnahme

Installation von Kupplungen, Muffen und Ritzel auf die Pumpenwelle.

Das ist eine kurze Installation- und Inbetriebnahmeinformation. Eine ausführliche- und die neuste Installationinformation. finden Sie in Installationsinformation Serie F1 und F2.

Anbau an den Nebenabtrieb

- "Drehrichtung links" und "Drehrichtung rechts" sind in die Abbildungen links (Seite 77) definiert.
- Das Antriebszahnrad des Nebenabtriebes und das angetriebene Zahnrad der Pumpe sind in der Abbildung unten zu sehen, die eine linksdrehende Pumpe darstellt.

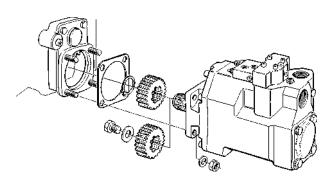


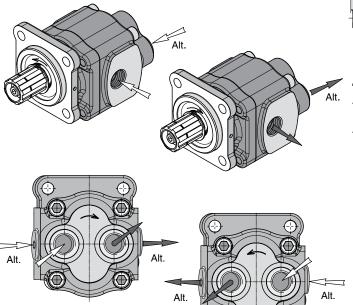
Abb. 6. Anbau der VP1 an einen Nebenabtrieb.

WICHTIG!

Verwenden Sie nur Spezialwerkzeug (siehe Abb.7), wenn Sie Kupplungen, Hülsen und Zahnräder auf die Pumpenwelle montieren.

Niemals Gewalt anwenden, wenn man diese Teile auf die F1 Welle montiert.

NB: Bei Anbau der F1 am die Installationshinweise auf den Seiten 73 bis 74, Kapitel 13



Verteilergetriebe lesen Sie

Einbau und Inbetriebnahme

1) Durchfluß- und Wellendrehrichtung

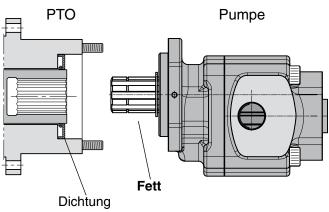
- Die Zahnradpumpen sind für beide Drehrichtungen vorgesehen (die Leckölabfuhr ist intern)
- Montage der Ölanschlüsse:
 - Ölanschlüsse mit Schrauben an das Pumpengehäuse handfest montieren, dann die Schrauben 30° (¹/₁₂ Umdrehung) anziehen.

Rechtsdrehende Pumpe

2) Verwendung der richtigen Sauganschlüsse

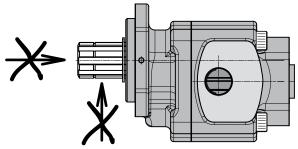
Linksdrehende Pumpe

Durchflussgeschwindigkeit [m/s] bei den angegebenen Leitungsabmessungen [mm/zoll]


[l/min]	19/3/4"	25 / 1"	32 / 1 ¹ / ₄ "	38 / 11/2"	50 / 2"
5	0,3	0,2	0,1	< 0,1	< 0,1
15	0,9	0,5	0,3	0,2	0,1
25	1,5	0,8	0,5	0,4	0,2
40	-	1,4	0,8	0,6	0,3
60	-	2,0	1,2	0,9	0,5
80	-	-	1,7	1,2	0,7
100	-	-	-	1,5	0,8

Die Pumpe muß nich mehr als 0,5 m über dem Ölstand im Tank montiert werden.

LKW-Hydraulik GPA und GP1


3) Schmierung der Pumpenwelle

Wenn der Nebenantrieb eine abgdichtete Abtriebsmuffe hat (siehe Abbildung) muss die Vielkeilwelle der Zahnradpumpe vor Inbetriebnahme mit einem hitzebständigen Schmierfett geschmiert werden; mehrfach periodisch, mindestens einmal im Jahr.

4) Keine äußeren Wellenbelastungen

- Die Pumpenwelle darf nicht radial oder axial belastet werden.
- Im Falle von radialen und/oder axialen Wellenbelastungen ist eine separate Lagerabstützung erforderlich.

5) Hydraulikflüssigkeit

Es dürfen nur hochwertige Hydraulik-flüssigkeiten auf Mineralbasis verwendet werden.

Zulässig sind HLP-Hydrauliköle nach DIN 51 524 / 51 525.

Viskosität

Zulässige Viskosität:

- 8 - 1000 cSt (mm²/s)

Empfohlene Viskosität:

- 22 cSt (bei kalter Umgebungstemp.)
- 37 cSt (normaler Umgebungstemp.)
- 46 cSt (heißer Umgebungstemp.)

Temperatur

- min. - 15 °C - max. + 80 °C

Filterung

- Saugleitungsfilter vermeiden
- Druck- oder Rücklauffilter: 10 bis 25 μm.

Einbau und Inbetriebnahme für F1, F2 und T1,

Drehrichtung links.

Obige Abb. zeigen die Drehrichtung im Verhältnis zum Förderstrom.

Die Drehrichtung läßt sich ändern (z.B. von rechts auf links), indem der Enddeckel um 180° gedreht wird.

Die vier Schrauben entfernen und Enddeckel um eine halbe Umdrehung drehen. Dabei muß der Deckel stets mit dem Pumpengehäuse in Kontakt bleiben.

Danach Schrauben mit 80-100 Nm anziehen.

Einbau

Die max. Dreh- und Biegemomente des Nebenabtriebs (aufgrund des Pumpengewichts) dürfen nicht überschritten werden. (Der ungefähre Schwerpunkt der verschiedenen Pumpen geht aus den Zeichnungen hervor).

Das Bild oben am Seite 75 zeigt zwei Möglichkeiten, ein Ritzel auf die Welle zu montieren. Die Vielkeilwelle der Pumpe paßt in den Zahnkranz des Nebenabtriebs.

NB: Um eine lange Lagerlebensdauer der Pumpe zu erzielen, sollte der Pumpenanbau an den Nebenabtrieb wie auf Seite 78 erfolgen.

Viskosität

Empfohlener Viskositätsbereich: 20 bis 30 mm²/s (cSt).

Betriebsviskosität:

- min. 10 mm²/s; max. 400 mm²/s.
- beim Anfahren, max. 4000 mm²/s.

Drehrichtung rechts.

Hydraulikflüssigkeiten

Die technischen Daten auf Pumpen mit konstantes Verdrängungsvolumen in Kapitel 3 bis 9 gelten unter Voraussetzung, daß hochwertige Mineralöle verwendet werden.

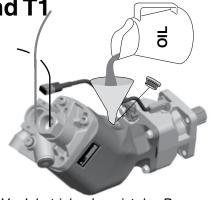
Zulässig sind HLP-Hydrauliköl (DIN 51524) sowie biologisch abbaubare Flüssigkeiten, wie z.B. natürliche oder künstliche Ester und Polyalphaolefine.

Die Hydraulikflüssigkeiten sollen eine der folgenden schwedischen Normen erfüllen:

- SS 15 54 34
- SMR 1996-2.

Weitere Informationen erteilt Parker Hannifin (Mobile Controls Div.).

- Automatiköle Typ ATF und Maschinenöle Typ API CD können ebenfalls verwendet werden.
- Die Dichtungen bestehen aus Nitrilgummi. Das verwendete Öl darf dieses Material nicht angreifen.


Betriebstemperatur

Systemflüssigkeit:

max. 75 °C.

NB: Bei Anbau einer Pumpe mit konstantem Verdrängungsvolumen am Verteilergetriebe lesen Sie die Installationshinweise auf den Seiten 73 bis 74, Kapitel 13.

77

Vor Inbetriebnahme ist das Pumpengehäuse mit Öl zu füllen.

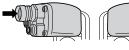
Leckölleitung

Pumpen mit konstantes Verdrängungsvolumen werden intern drainiert. Eine externe Leckölleitung ist daher nicht erforderlich.

Wenn die Pumpe auf einen Nebenantrieb montiert wird, empfielt sich eine Drainage-Leitung vom Bypass-Ventil zum Tank.

Filteruna

Die Filterung soll dem ISO Standard 4406, Code 20/18/13, entsprechen.

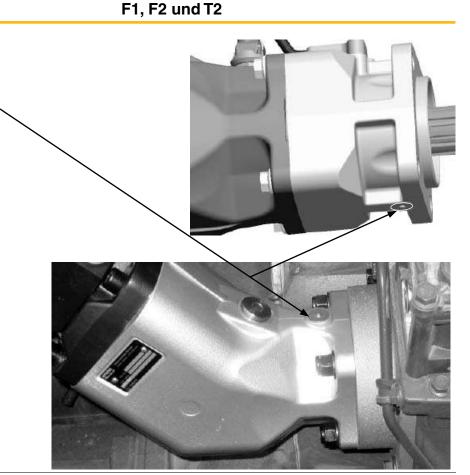

Zur Erzielung einer langen Lebensdauer empfehlen wir einen Filtergrad von 10 µm (absolut).

Inbetriebnahme

Vor Einfüllen der empfohlenen Flüssigkeit ist sicherzustellen, daß das gesamte System sauber ist.

Die interne Leckage sorgt bei Inbetriebnahme nicht für eine ausreichende Schmierung, weshalb das Pumpengehäuse mindestens zur Hälfte mit Öl zu füllen ist.

- NB: Wird die Pumpe oberhalb des Ölbehälters montiert, sollte der Sauganschluss immer über dem Druckanschluss liegen.
 - Während des Betriebs muß das Pumpengehäuse mindestens zur Hälfte mit Öl gefüllt sein.

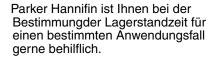

Parker Hannifin Pump & Motor Division Europe Trollhättan, Schweden

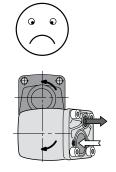
Einbau und Inbetriebnahme

Falls Öl aus der Anzeigeöffnung der Pumpe austreten sollte:

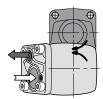
- Die Anlage sofort abschalten.
- Die Ursache der Undichtigkeit ermitteln.
- Beschädigte Teile austauschen.
- Sicherstellen, dass die Ursache des Problems und nicht nur das Symptom beseitigt wurde.

Parker übernimmt keinerlei Haftung für Beschädigungen an Nebenantrieben, Motor und Getriebe, die durch unsachgemäße Wartung der Hydraulikanlage entstanden sind.

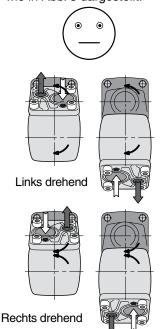


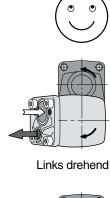

Lebensdauer des Pumpenlagers

HINWEIS:


 Die folgende Information bezieht sich auf Pumpen, bei denen das angetriebene Zahnrad auf der Pumpenwelle sitzt. Die kürzeste Lebensdauer ergibt sich aus der in Abb. 1 dargestellten Pumpeninstallation.

 Die längste Lebensdauer erzielt man durch eine Pumpeninstallation wie in Abb. 3 dargestellt.




Links drehend

Rechts drehend

Abb. 1.

Rechts drehend

Abb. 3.

Abb. 2.

Katalog MSG30-8200/DE Einbau und Inbetriebnahme

Installation und Inbetriebnahme für VP1

Drehrichtung

Die Drehrichtung der VP1 läßt sich nicht ändern. Die Pumpe ist in einer links- und in einer rechtsdrehenden Ausführung erhältlich (siehe Pfeil an der Pumpenseite (Abb. 4 und 5).

Die gewünschte Drehrichtung muß demnach bei Bestellung angegeben werden.

Installation

Die VP1 läßt sich direkt an Nebenabtriebe gemäß DIN 5462 montieren.

Die Pumpe kann in beliebiger Stellung angebaut werden. Vor Inbetriebnahme ist die Pumpe durch die obere Spülöffnung zu füllen (siehe Maßzeichnung auf Seite 49 und 52, Kapitel 9).

Abb. 6 auf Seite 75 zeigt drei Arten, ein Ritzel auf die Welle der VP1 zu setzen. Bei Nebenabtrieben mit Stützlagern wird die Pumpenwelle normalerweise direkt in die Innenzahnwelle des Nebenabtriebs eingeführt.

Einbau

Die max. Dreh- und Biegemomente des Nebenabtriebs (aufgrund des Pumpengewichts) dürfen nicht überschritten werden. (Der ungefähre Schwerpunkt der verschiedenen Pumpen geht aus den Zeichnungen hervor).

Hydraulikflüssigkeiten

Die Technischen Daten der VP1 (siehe Seite 48, Kapitel 9) gelten unter der Voraussetzung, daß hochwertige Mineralöle verwendet werden.

Zulässig sind HLP-Hydrauliköle (DIN 51524), Automatiköle Typ ATF sowie Maschinenöle Typ API CD.

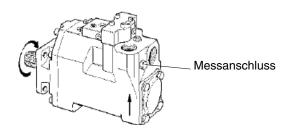


Abb. 4. Linksdrehende Pumpe.

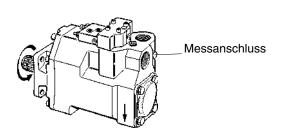


Abb. 5. Rechtsdrehende Pumpe.

Betriebstemperatur

Systemflüssigkeit: Max. 75 °C.

Viskosität

Empfohlener Viskositätsbereich:

20 bis 30 mm²/s (cSt).

Betriebsviskosität: 10 - 400 mm²/s. Beim Anfahren: Max. 1000 mm²/s.

Filterung

Zur Erzielung einer langen Lebensdauer der VP1 empfehlen wir folgende Filtergrade:

- 25 µm (absolut) in sauberer Umgebung oder bei niedriegen Drücken.
- 10 µm (absolut) in schmutziger Umgebung oder bei hohen Drücken.

Die Filterung soll dem ISO Standard 4406, Code 20/18/13, entsprechen.

Leckölleitung

Für den LS-Regler ist *eine separate Leckölleitung erforderlich;* diese sollte direkt zum Tank gelegt werden (siehe Abb. 8).

Inbetriebnahme

Vor Einfüllen der empfohlenen Flüssigkeit ist sicherzustellen, daß das gesamte System sauber ist.

Zusätzlich muß die VP1-Pumpe gründlich durch-gespült werden, damit gewährleistet ist, daß keine Luft mehr im Pumpengehäuse eingeschlossen ist. Hierzu ist die obere Spülöffnung zu verwenden (siehe Abb. 8).

WICHTIG!

Der Sauganschluss der Pumpe muß immer unter dem niedrigsten Ölstand im Tank liegen (siehe Abb. 8).

Vor Inbetriebnahme Pumpe befüllen und entlüften.

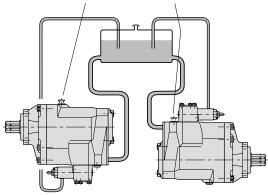


Abb. 8. Die VP1 soll immer tiefer liegen als der Ölstand im Tank. Zusätzlich muss die VP1-Pumpe gründlich dürchgespült werden, damit gewährleistet ist, dass keine Luft mehr im Pumpengehäuse eingeschlossen ist.

Parker weltweit

Europa, Naher Osten, Afrika

AE - Vereinigte Arabische Emirate, Dubai

Tel: +971 4 8127100 parker.me@parker.com

AT – Österreich, Wiener Neustadt Tel: +43 (0)2622 23501-0 parker.austria@parker.com

AT - Osteuropa, Wiener Neustadt Tel: +43 (0)2622 23501 900 parker.easteurope@parker.com

AZ - Aserbaidschan, Baku Tel: +994 50 2233 458 parker.azerbaijan@parker.com

BE/LU – Belgien, Nivelles Tel: +32 (0)67 280 900 parker.belgium@parker.com

BG - Bulgarien, Sofia Tel: +359 2 980 1344 parker.bulgaria@parker.com

BY - Weißrussland, Minsk Tel: +48 (0)22 573 24 00 parker.poland@parker.com

CH – Schweiz, Etoy, Tel: +41 (0)21 821 87 00 parker.switzerland@parker.com

CZ – Tschechische Republik, Klecany

Tel: +420 284 083 111 parker.czechrepublic@parker.com

DE - Deutschland, Kaarst Tel: +49 (0)2131 4016 0 parker.germany@parker.com

DK - Dänemark, Ballerup Tel: +45 43 56 04 00 parker.denmark@parker.com

ES - Spanien, Madrid Tel: +34 902 330 001 parker.spain@parker.com

FI - Finnland, Vantaa Tel: +358 (0)20 753 2500 parker.finland@parker.com

FR - Frankreich, Contamine s/Arve Tel: +33 (0)4 50 25 80 25 parker.france@parker.com

GR - Griechenland, Piraeus Tel: +30 210 933 6450 parker.greece@parker.com **HU - Ungarn,** Budaörs Tel: +36 23 885 470 parker.hungary@parker.com

IE - Irland, Dublin Tel: +353 (0)1 466 6370 parker.ireland@parker.com

IL - Israël

Tel: +39 02 45 19 21 parker.israel@parker.com

IT – Italien, Corsico (MI) Tel: +39 02 45 19 21 parker.italy@parker.com

KZ - Kasachstan, Almaty Tel: +7 7273 561 000 parker.easteurope@parker.com

NL - Niederlande, Oldenzaal Tel: +31 (0)541 585 000 parker.nl@parker.com

NO - Norwegen, Asker Tel: +47 66 75 34 00 parker.norway@parker.com

PL - Polen, Warschau Tel: +48 (0)22 573 24 00 parker.poland@parker.com

PT - Portugal

Tel: +351 22 999 7360 parker.portugal@parker.com

RO – Rumänien, Bukarest Tel: +40 21 252 1382 parker.romania@parker.com

RU - Russland, Moskau Tel: +7 495 645-2156 parker.russia@parker.com

SE - Schweden, Spånga Tel: +46 (0)8 59 79 50 00 parker.sweden@parker.com

SK – Slowakei, Banská Bystrica Tel: +421 484 162 252 parker.slovakia@parker.com

SL – Slowenien, Novo Mesto Tel: +386 7 337 6650 parker.slovenia@parker.com

TR – Türkei, Istanbul Tel: +90 216 4997081 parker.turkey@parker.com

UA - Ukraine, Kiew Tel: +48 (0)22 573 24 00 parker.poland@parker.com

UK - Großbritannien, Warwick Tel: +44 (0)1926 317 878 parker.uk@parker.com ZA – Republik Südafrika,

Kempton Park Tel: +27 (0)11 961 0700 parker.southafrica@parker.com

Nordamerika

CA – Kanada, Milton, Ontario Tel: +1 905 693 3000

US – USA, Cleveland Tel: +1 216 896 3000

Asien-Pazifik

AU – Australien, Castle Hill Tel: +61 (0)2-9634 7777

CN - China, Schanghai Tel: +86 21 2899 5000

HK - Hong Kong Tel: +852 2428 8008

IN - Indien, Mumbai Tel: +91 22 6513 7081-85

JP – Japan, Tokyo Tel: +81 (0)3 6408 3901

KR - Korea, Seoul Tel: +82 2 559 0400

MY - Malaysia, Shah Alam Tel: +60 3 7849 0800

NZ – Neuseeland, Mt Wellington Tel: +64 9 574 1744

SG - Singapur Tel: +65 6887 6300

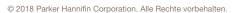
TH - Thailand, Bangkok Tel: +662 186 7000

TW – Taiwan, Taipei Tel: +886 2 2298 8987

Südamerika

AR – Argentinien, Buenos Aires Tel: +54 3327 44 4129

BR - Brasilien, Sao Jose dos Campos Tel: +55 800 727 5374


CL - Chile, Santiago Tel: +56 2 623 1216

MX - Mexico, Toluca Tel: +52 72 2275 4200

Europäisches Produktinformationszentrum Kostenlose Rufnummer: 00 800 27 27 5374 (von AT, BE, CH, CZ, DE, DK, EE, ES, FI, FR, IE, IL, IS, IT, LU, MT, NL, NO, PL, PT, RU, SE, SK, UK, ZA)

Katalog MSG30-8200/DE. POD 05/2018 TMCZ

4 2018-02-08

Pat-Parker-Platz 1 41564 Kaarst

Tel.: +49 (0)2131 4016 0 Fax: +49 (0)2131 4016 9199 parker.germany@parker.com www.parker.com

